熊猫是否按值连续过滤?

时间:2020-06-22 22:37:54

标签: python pandas filtering

所以我试图按一行中的值过滤熊猫数据框。 基本上我有一个df,其中一行包含建筑物的名称,例如。教育,K-12,办公室,教堂等。

我想根据这些值过滤一个新的数据框。 例如。我想“提取”单元格值等于“ Education,K-12”的列。 我该怎么做?

我进行了广泛搜索,但是大多数链式过滤似乎都是基于列值的。不应基于列值。

谢谢!

          SAN ANTONIO, TX SAN ANTONIO, TX.1 SAN ANTONIO, TX.2 SAN ANTONIO, TX.3  \
0         Commercial        Commercial        Commercial        Commercial   
1        Fossil Fuel       Fossil Fuel       Fossil Fuel       Fossil Fuel   
2    Education, K-12   Education, K-12   Education, K-12   Education, K-12   
..               ...               ...               ...               ...   
 

            SAN ANTONIO, TX.429  SAN ANTONIO, TX.430 SAN ANTONIO, TX.431  
0            Commercial          Commercial          Commercial  
1              Electric            Electric            Electric  
2         Office, Large       Office, Large       Office, Large  
..                  ...                 ...                 ...  


[745 rows x 432 columns]>

3 个答案:

答案 0 :(得分:1)

我的第一个想法是转置数据框

transposed = dt.T

要获得“教育,列中的K-12”

                            0            1                2
SAN ANTONIO, TX    Commercial  Fossil Fuel  Education, K-12
SAN ANTONIO, TX.1  Commercial  Fossil Fuel  Education, K-12
SAN ANTONIO, TX.2  Commercial  Fossil Fuel    Office, Large
SAN ANTONIO, TX.3  Commercial  Fossil Fuel  Education, K-12

然后在行中搜索

transposed[ transposed[2] == 'Education, K-12' ].index

最小工作示例。

我仅使用io.StringIO来模拟内存中的文件,但是您应该使用常规文件名。

text = '''SAN ANTONIO, TX;SAN ANTONIO, TX.1;SAN ANTONIO, TX.2;SAN ANTONIO, TX.3
Commercial;Commercial;Commercial;Commercial
Fossil Fuel;Fossil Fuel;Fossil Fuel;Fossil Fuel
Education, K-12;Education, K-12;Office, Large;Education, K-12'''

import io
import pandas as pd

df = pd.read_csv(io.StringIO(text), sep=';')

print('\n--- df ---\n')
print(df)

transposed = df.T

print('\n--- transposed ---\n')
print(transposed)

print('\n--- names ---\n')
cols = transposed[ transposed[2] == 'Education, K-12' ].index 
print(cols)

print('\n--- columns ---\n')
print(df[ cols ])

结果

--- df ---

   SAN ANTONIO, TX SAN ANTONIO, TX.1 SAN ANTONIO, TX.2 SAN ANTONIO, TX.3
0       Commercial        Commercial        Commercial        Commercial
1      Fossil Fuel       Fossil Fuel       Fossil Fuel       Fossil Fuel
2  Education, K-12   Education, K-12     Office, Large   Education, K-12

--- transposed ---
                            0            1                2
SAN ANTONIO, TX    Commercial  Fossil Fuel  Education, K-12
SAN ANTONIO, TX.1  Commercial  Fossil Fuel  Education, K-12
SAN ANTONIO, TX.2  Commercial  Fossil Fuel    Office, Large
SAN ANTONIO, TX.3  Commercial  Fossil Fuel  Education, K-12

--- names ---

Index(['SAN ANTONIO, TX', 'SAN ANTONIO, TX.1', 'SAN ANTONIO, TX.3'], dtype='object')

--- columns ---

   SAN ANTONIO, TX SAN ANTONIO, TX.1 SAN ANTONIO, TX.3
0       Commercial        Commercial        Commercial
1      Fossil Fuel       Fossil Fuel       Fossil Fuel
2  Education, K-12   Education, K-12   Education, K-12

答案 1 :(得分:1)

我以前从未见过这种用例。想不出一种优雅的方法,但是您可以先转置数据框,然后仅选择所需的行,然后再转回。

在下面的示例中,我将第7行设为要过滤的内容。因此,假设您要删除第7行中带有“ c”的列。因此,基本上,我们需要删除“ col2”。

>>> col1=['a','a','a','a','a','b','b','b']
>>> col2=['a','a','a','a','a','b','b','c']
>>> cols=['col1','col2']
>>> values=zip(col1,col2)
>>> import pandas as pd
>>> df=pd.DataFrame(data=values,columns=cols)
>>> df
  col1 col2
0    a    a
1    a    a
2    a    a
3    a    a
4    a    a
5    b    b
6    b    b
7    b    c
>>> dft=df.T
>>> dft
      0  1  2  3  4  5  6  7
col1  a  a  a  a  a  b  b  b
col2  a  a  a  a  a  b  b  c
>>> dff=dft[dft[7]!='c']
>>> dff
      0  1  2  3  4  5  6  7
col1  a  a  a  a  a  b  b  b
>>> dfo=dff.T
>>> dfo
  col1
0    a
1    a
2    a
3    a
4    a
5    b
6    b
7    b

答案 2 :(得分:1)

测试想法后,我创建了这个

cols = df.columns[ df.iloc[2] == 'Education, K-12' ]

df[ cols ]

我只得到一行iloc[2],所以我得到Series,并且可以将Series中的值与'Education, K-12'进行比较-这为每个项目提供True/False的值在这一行中,我可以用它来过滤列。


最小的工作示例。

我仅使用io.StringIO来模拟内存中的文件,但是您应该使用常规文件名。

text = '''SAN ANTONIO, TX;SAN ANTONIO, TX.1;SAN ANTONIO, TX.2;SAN ANTONIO, TX.3
Commercial;Commercial;Commercial;Commercial
Fossil Fuel;Fossil Fuel;Fossil Fuel;Fossil Fuel
Education, K-12;Education, K-12;Office, Large;Education, K-12'''

import io
import pandas as pd

df = pd.read_csv(io.StringIO(text), sep=';')

print('\n--- df ---\n')
print(df)

print('\n--- Series ---\n')
print( df.iloc[2] )

print('\n--- mask ---\n')
print( df.iloc[2] == 'Education, K-12' )

print('\n--- names ---\n')
cols = df.columns[ df.iloc[2] == 'Education, K-12' ]
print(cols)

print('\n--- columns ---\n')
print(df[ cols ])

结果:

--- df ---

   SAN ANTONIO, TX SAN ANTONIO, TX.1 SAN ANTONIO, TX.2 SAN ANTONIO, TX.3
0       Commercial        Commercial        Commercial        Commercial
1      Fossil Fuel       Fossil Fuel       Fossil Fuel       Fossil Fuel
2  Education, K-12   Education, K-12     Office, Large   Education, K-12

--- Series ---

SAN ANTONIO, TX      Education, K-12
SAN ANTONIO, TX.1    Education, K-12
SAN ANTONIO, TX.2      Office, Large
SAN ANTONIO, TX.3    Education, K-12
Name: 2, dtype: object

--- mask ---

SAN ANTONIO, TX       True
SAN ANTONIO, TX.1     True
SAN ANTONIO, TX.2    False
SAN ANTONIO, TX.3     True
Name: 2, dtype: bool

--- names ---

Index(['SAN ANTONIO, TX', 'SAN ANTONIO, TX.1', 'SAN ANTONIO, TX.3'], dtype='object')

--- columns ---

   SAN ANTONIO, TX SAN ANTONIO, TX.1 SAN ANTONIO, TX.3
0       Commercial        Commercial        Commercial
1      Fossil Fuel       Fossil Fuel       Fossil Fuel
2  Education, K-12   Education, K-12   Education, K-12