我从trainX分离出了train_x和valid_x,从trainY分离出了train_y和valid_y,它们的形状如下。我想对标签LABELS = set([[“ Faces”,“ Leopards”,“ Motorbikes”,“ airplanes”])的图像进行分类。
print(train_x.shape, len(train_y))
torch.Size([1339, 96, 96, 3]) 1339
print(valid_x.shape, len(valid_y))
torch.Size([335, 96, 96, 3]) 335
print(testX.shape, len(testY))
torch.Size([559, 96, 96, 3]) 559
所以我想按以下方式对数据批量代码使用常规训练/有效:
#train the network
n_epochs = 20
valid_loss = []
train_loss = []
for epoch in range(1,n_epochs+1):
cur_train_loss = 0.0
cur_valid_loss = 0.0
#####################
#### Train model ####
#####################
cnn_model.train()
for data, target in trainLoader:
if train_on_gpu:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = cnn_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
cur_train_loss += loss.item() * data.size(0)
########################
#### Validate model ####
########################
cnn_model.eval()
for data, target in validLoader:
if train_on_gpu:
data, target = data.cuda(), target.cuda()
output = cnn_model(data)
loss = criterion(output, target)
cur_valid_loss += loss.item() * data.size(0)
# calculate avg loss
avg_train_loss = cur_train_loss / len(trainLoader.sampler)
avg_valid_loss = cur_valid_loss / len(validLoader.sampler)
train_loss.append(avg_train_loss)
valid_loss.append(avg_valid_loss)
print('Epoch: {} \t train_loss: {:.6f} \t valid_loss: {:.6f}'.format(epoch, avg_train_loss, avg_valid_loss))
那我该怎么办? 我已经搜索了,但是没有发现具体的问题。我想为此使用pytorch。我已经为另一个类似的问题构建了模型,但是我使用DataLoader一次加载了一批数据以进行训练和验证。
答案 0 :(得分:0)
您可以使用torch.utils.data.TensorDataset
创建数据集,其中train_x
的每个样本都与train_y
中的相应标签相关联,这样DataLoader
可以在您创建批处理时习惯了。
from torch.utils.data import DataLoader, TensorDataset
train_dataset = TensorDataset(train_x, train_y)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
valid_dataset = TensorDataset(valid_x, valid_y)
valid_dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_dataset = TensorDataset(testX, testY)
test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)