我正在使用tensorflow-gpu
1.15和keras
2.3.1测试Yolo-v3(https://github.com/experiencor/keras-yolo3)。培训过程开始于:
runfile("train.py",'-c config.json')
以下是打印出来的消息:
Using TensorFlow backend.
WARNING:tensorflow:From train.py:40: The name tf.keras.backend.set_session is deprecated. Please use tf.compat.v1.keras.backend.set_session instead.
valid_annot_folder not exists. Spliting the trainining set.
Seen labels: {'kangaroo': 266}
Given labels: ['kangaroo']
Training on: ['kangaroo']
WARNING:tensorflow:From C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\ops\resource_variable_ops.py:1630: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
.....
Loading pretrained weights.
C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\callbacks\callbacks.py:998: UserWarning: `epsilon` argument is deprecated and will be removed, use `min_delta` instead.
warnings.warn('`epsilon` argument is deprecated and '
Traceback (most recent call last):
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\client\session.py", line 1365, in _do_call
return fn(*args)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\client\session.py", line 1348, in _run_fn
self._extend_graph()
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\client\session.py", line 1388, in _extend_graph
tf_session.ExtendSession(self._session)
InvalidArgumentError: Cannot assign a device for operation replica_0/lambda_1/Shape: {{node replica_0/lambda_1/Shape}} was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0 ]. Make sure the device specification refers to a valid device.
[[replica_0/lambda_1/Shape]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train.py", line 305, in <module>
_main_(args)
File "train.py", line 282, in _main_
max_queue_size = 8
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\engine\training.py", line 1732, in fit_generator
initial_epoch=initial_epoch)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\engine\training_generator.py", line 42, in fit_generator
model._make_train_function()
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\engine\training.py", line 333, in _make_train_function
**self._function_kwargs)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\backend\tensorflow_backend.py", line 3006, in function
v1_variable_initialization()
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\backend\tensorflow_backend.py", line 420, in v1_variable_initialization
session = get_session()
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\keras\backend\tensorflow_backend.py", line 385, in get_session
return tf_keras_backend.get_session()
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\keras\backend.py", line 486, in get_session
_initialize_variables(session)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\keras\backend.py", line 903, in _initialize_variables
[variables_module.is_variable_initialized(v) for v in candidate_vars])
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\client\session.py", line 956, in run
run_metadata_ptr)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\client\session.py", line 1180, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\client\session.py", line 1359, in _do_run
run_metadata)
File "C:\Users\Dy\Anaconda3\envs\tf1x\lib\site-packages\tensorflow_core\python\client\session.py", line 1384, in _do_call
raise type(e)(node_def, op, message)
InvalidArgumentError:无法为操作copy_0_0 / lambda_1 / Shape分配设备:节点copy_0_0 / lambda_1 / Shape(在C:\ Users \ Dy \ Anaconda3 \ envs \ tf1x \ lib \ site-packages \ tensorflow_core \ python \ framework中定义\ ops.py:1748)已明确分配给/ device:GPU:0,但可用设备为[/ job:localhost /副本0 / task:0 / device:CPU:0]。确保设备规格引用的是有效设备。 [[replica_0 / lambda_1 /形状]]
我不明白是什么原因导致了InvalidArgumentError
。我的tensoflow-gpu
安装不正确吗?还是在部署gpu时发生冲突?
答案 0 :(得分:1)
尝试将“gpus”值更改为“0”,如果它是其他任何东西。如果您在 GPU 中执行,它应该可以工作。