我已经训练了我的神经网络模型。我想从这个训练时代知道我的模型的准确性。我必须获得平均值还是仅获得最后一个? 这是我的输出
25/25 - 12s - loss: 1.3415 - accuracy: 0.3800 - val_loss: 1.0626 - val_accuracy: 0.5000
Epoch 2/20
25/25 - 12s - loss: 1.0254 - accuracy: 0.5000 - val_loss: 1.1129 - val_accuracy: 0.4000
Epoch 3/20
25/25 - 12s - loss: 0.9160 - accuracy: 0.6500 - val_loss: 0.8640 - val_accuracy: 0.7000
Epoch 4/20
25/25 - 12s - loss: 0.8237 - accuracy: 0.6300 - val_loss: 0.8494 - val_accuracy: 0.6000
Epoch 5/20
25/25 - 11s - loss: 0.7411 - accuracy: 0.7320 - val_loss: 0.7320 - val_accuracy: 0.8000
Epoch 6/20
25/25 - 12s - loss: 0.7625 - accuracy: 0.6600 - val_loss: 1.0259 - val_accuracy: 0.6000
Epoch 7/20
25/25 - 12s - loss: 0.8317 - accuracy: 0.6800 - val_loss: 0.5907 - val_accuracy: 0.7500
Epoch 8/20
25/25 - 12s - loss: 0.5557 - accuracy: 0.8100 - val_loss: 0.4630 - val_accuracy: 0.9000
Epoch 9/20
25/25 - 11s - loss: 0.6640 - accuracy: 0.7629 - val_loss: 0.3308 - val_accuracy: 0.9500
Epoch 10/20
25/25 - 12s - loss: 0.5674 - accuracy: 0.8200 - val_loss: 0.5039 - val_accuracy: 0.8000
Epoch 11/20
25/25 - 12s - loss: 0.5566 - accuracy: 0.8200 - val_loss: 0.2161 - val_accuracy: 0.9500
Epoch 12/20
25/25 - 16s - loss: 0.5190 - accuracy: 0.8400 - val_loss: 0.3210 - val_accuracy: 0.8500
Epoch 13/20
25/25 - 12s - loss: 0.5437 - accuracy: 0.7800 - val_loss: 0.7253 - val_accuracy: 0.6500
Epoch 14/20
25/25 - 12s - loss: 0.5035 - accuracy: 0.8300 - val_loss: 0.4291 - val_accuracy: 0.8500
Epoch 15/20
25/25 - 11s - loss: 0.4276 - accuracy: 0.8600 - val_loss: 0.2902 - val_accuracy: 0.8500
Epoch 16/20
25/25 - 11s - loss: 0.4913 - accuracy: 0.8000 - val_loss: 0.3027 - val_accuracy: 0.9000
Epoch 17/20
25/25 - 11s - loss: 0.2931 - accuracy: 0.9100 - val_loss: 0.2718 - val_accuracy: 0.9000
Epoch 18/20
25/25 - 11s - loss: 0.4554 - accuracy: 0.8500 - val_loss: 0.4412 - val_accuracy: 0.8000
Epoch 19/20
25/25 - 11s - loss: 0.3803 - accuracy: 0.8400 - val_loss: 0.2479 - val_accuracy: 1.0000
Epoch 20/20
25/25 - 12s - loss: 0.2692 - accuracy: 0.9200 - val_loss: 0.1805 - val_accuracy: 1.0000
<tensorflow.python.keras.callbacks.History at 0x7f64eec7ada0>```
答案 0 :(得分:1)
假设您像这样训练模型:
history = model.fit(...)
您可以通过history.history['acc']
访问准确性。其他有用的指标:
loss
-损失val_acc
-验证准确性val_loss
-验证丢失只有在您设置了验证后,才会显示最后两个。