数据:
orderid shopid userid event_time timestamp
31077182438530 10151 154282716 2019-12-27 00:33:02 1577406782
31078679118082 10151 154282716 2019-12-27 00:58:00 1577408280
31079250834942 10151 154282716 2019-12-27 01:07:30 1577408850
31086252001110 10151 12825914 2019-12-27 03:04:12 1577415852
31087365203493 10151 102963110 2019-12-27 03:22:46 1577416966
当前代码:
shopid = df.shopid.values
userid = df.userid.values
event_time = df.timestamp.values
flag = np.zeros(shopid.shape, dtype=int)
current_shop = 0
for i in range(len(df)):
if shopid[i] != current_shop:
current_shop = shopid[i]
prev_time = event_time[i] - 3600
users = {userid[i]: 1}
for j in range(i+1, len(df)):
if (current_shop == shopid[j]) and (event_time[j] - event_time[i] <= 3600):
if userid[j] not in users:
users[userid[j]] = 0
users[userid[j]] += 1
else:
break
while j - i / len(users) < 3 and event_time[j-1] - prev_time > 3600:
j -= 1
users[userid[j]] -= 1
if users[userid[j]] == 0:
users.pop(userid[j])
if j - i / len(users) >= 3:
flag[i:j] = 1
prev_time = event_time[i]
基本上,我想为每个商店做的事,找出哪个用户在任何间隔的1小时内做出了3个或更多的订单。因此,在上面,我遍历每个商店(第一个循环),然后遍历每个商店的订单(第二个循环),检查时间是否在1小时以内,然后将用户添加到包含订单数的字典中。之后,我执行一个递减循环(第3循环)以计算订单数/唯一用户,如果少于3,我将把用户从字典中弹出。最后,检查条件是否相反,如果有效,我将标志设置为1。然后使用该标志标识特定的订单ID,相应的商店和用户ID。
预期输出:
orderid shopid userid event_time timestamp flag
31077182438530 10151 154282716 2019-12-27 00:33:02 1577406782 1
31078679118082 10151 154282716 2019-12-27 00:58:00 1577408280 1
31079250834942 10151 154282716 2019-12-27 01:07:30 1577408850 1
31086252001110 10151 12825914 2019-12-27 03:04:12 1577415852 0
31087365203493 10151 102963110 2019-12-27 03:22:46 1577416966 0
答案 0 :(得分:0)
你可以试试吗?
df['event_time'] = pd.to_datetime(df['event_time'])
这应该为您提供每个商店每小时的计数
df.groupby(['shopid','userid', pd.Grouper(key='event_time',freq='H')]).count()
df['flag'] = df.groupby(['shopid','userid', pd.Grouper(key='event_time',freq='H')])['userid'].count().values
这是我得到的输出
shopid userid event_time orderid timestamp
0 10151 12825914 2019-12-27 03:00:00 1 1
1 10151 12825914 2019-12-27 07:00:00 1 1
2 10151 102963110 2019-12-27 03:00:00 1 1
3 10151 102963110 2019-12-27 04:00:00 1 1
4 10151 154282716 2019-12-27 00:00:00 2 2
5 10151 154282716 2019-12-27 01:00:00 1 1
6 10151 154282716 2019-12-27 03:00:00 1 1
7 10151 154282716 2019-12-27 04:00:00 1 1
8 10151 154282716 2019-12-27 14:00:00 1 1