我有两个来自两个主题orders
和fsource
的视频流。主要是订单是静态的,很少更新,而fsource
的更新速度为每秒1000。在这里,我使用了KTable-KTabke
连接,因为它们具有相同的键。
PObject:
private String orderId;{1,2,3,4,5,6}
private Double price;
private Long oTNum;//{1,2,3,4,5,6}
FSource:
private String orderId;{1,2,3,4,5,6}
private Double adPrice;
private Long fTNum;//{1,2,3,4,5.........} Sequence number for for each event
EnOrder:
private String orderId;
private Double price;
private Double adPrice;
private Long oTNum;
private Long fTNum;
private Long eTNum;//{1,2,3,4,5.........}
public class EnStreamApp implements PTMS{
private static final Logger logger = Logger.getLogger(EnStreamApp.class);
public static void main(String[] args) {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "my-app1-application");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, URL_KAFKA_BROKERS);
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, new JSONSerdeComp<>().getClass());
props.put(StreamsConfig.STATE_DIR_CONFIG, "C:\\temp");
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
props.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10); //commit as fast as possible
props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);
props.put(StreamsConfig.consumerPrefix(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG), 30000);
StreamsBuilder builder = new StreamsBuilder();
KTable<String, POrder> pOrderTable = builder.<String, POrder>table("orders"); // Static KTable
KTable<String, FSource> fTable = builder.<String, FSource>table("fsource"); // Events 1000 per seconds
KTable<String, EnOrder> enrichedTable = pOrderTable.join(fTable, new ValueJoiner<POrder, FSource, EnOrder>() {
@Override
public EnOrder apply(POrder order, FSource fSource) {
EnOrder enOrder = EnOrder.builder()
.orderId(order.getOrderId())
.price(order.getPrice())
.oTNum(order.getOTNum())
.adPrice(fSource!=null ? fSource.getAdPrice():null)
.fTNum(fSource!=null ? fSource.getFTNum():0)
.eTNum(AtomicSequenceGenerator.INSTANCE.getNext()) // This should be in-sync with events from fSource fTNum
.build();
logger.info(String.format("Enriched:{OrderId=%s, oTNum=%s, fTNum=%s, eTNum=%s}", enOrder.getOrderId(), enOrder.getOTNum(), enOrder.getFTNum(), enOrder.getETNum()));
return enOrder;
}
});
enrichedTable.toStream().to("enriched", Produced.with(Serdes.String(), new JSONSerdeComp<>()));
KafkaStreams streams = new KafkaStreams(builder.build(), props);
streams.start();
Runtime.getRuntime().addShutdownHook(new Thread(() -> streams.close()));
}
}
2020-06-16 14:00:56,577 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-251f1c80-dfcf-433a-a361-5f0fc3cf887e-StreamThread-1]: Enriched:{OrderId=3, oTNum=3, fTNum=232, eTNum=232}
2020-06-16 14:00:56,578 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-251f1c80-dfcf-433a-a361-5f0fc3cf887e-StreamThread-1]: Enriched:{OrderId=4, oTNum=4, fTNum=233, eTNum=233}
2020-06-16 14:00:56,578 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-251f1c80-dfcf-433a-a361-5f0fc3cf887e-StreamThread-1]: Enriched:{OrderId=5, oTNum=5, fTNum=234, eTNum=234}
2020-06-16 14:18:54,979 WARN org.apache.kafka.streams.kstream.internals.KTableSource [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Detected out-of-order KTable update for fsource-STATE-STORE-0000000003 at offset 9560, partition 0.
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=5, oTNum=5, fTNum=9564, eTNum=15742}
2020-06-16 14:26:50,799 WARN org.apache.kafka.streams.kstream.internals.KTableSource [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Detected out-of-order KTable update for fsource-STATE-STORE-0000000003 at offset 9562, partition 0.
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=6, oTNum=6, fTNum=9565, eTNum=15743}
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=1, oTNum=1, fTNum=9566, eTNum=15744}
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=2, oTNum=2, fTNum=9567, eTNum=15745}
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=3, oTNum=3, fTNum=9568, eTNum=15746}
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=4, oTNum=4, fTNum=9569, eTNum=15747}
在一段时间内,流的合并看起来还不错,但是在这段时间内,我看到join
函数正在处理重复的事件。理想情况下,fsource
的一个事件应该导致“ joined stream”上出现一个事件,然后为什么join处理的事件比接收到的要多。
看起来正确
2020-06-16 14:00:56,578 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-251f1c80-dfcf-433a-a361-5f0fc3cf887e-StreamThread-1]: Enriched:{OrderId=5, oTNum=5, fTNum=234, eTNum=234}
这看起来不正确
2020-06-16 14:18:54,979 WARN org.apache.kafka.streams.kstream.internals.KTableSource [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Detected out-of-order KTable update for fsource-STATE-STORE-0000000003 at offset 9560, partition 0.
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=5, oTNum=5, fTNum=9564, eTNum=15742}
2020-06-16 14:26:50,799 WARN org.apache.kafka.streams.kstream.internals.KTableSource [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Detected out-of-order KTable update for fsource-STATE-STORE-0000000003 at offset 9562, partition 0.
2020-06-16 14:26:50,799 INFO com.amicngh.mr.streams.AaggregatorStream [my-app1-aggregation-application-82e14b19-9ae3-4ce7-9c1b-a041ccbe70ed-StreamThread-1]: Enriched:{OrderId=6, oTNum=6, fTNum=9565, eTNum=15743}
有人知道为什么加入不能按预期工作吗?这些警告会导致此问题吗?我该如何解决?
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.4.1</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>2.4.1</version>
</dependency>
更新:
任何想法,为什么join
处理重复事件(请参见下面的内容,我可以看到同一eTNum
的多个fTNum
值)
2020-06-17 17:59:05,033 INFO com.cs.pt.mr.streams.AaggregatorStream [my-app1-aggregation-application-47c109a1-d4ad-4d11-a833-9e24d8b99f6b-StreamThread-1]: Enriched:{OrderId=5, oTNum=5, fTNum=6989, eTNum=120749}
2020-06-17 17:59:19,194 INFO com.cs.pt.mr.streams.AaggregatorStream [my-app1-aggregation-application-47c109a1-d4ad-4d11-a833-9e24d8b99f6b-StreamThread-1]: Enriched:{OrderId=5, oTNum=5, fTNum=6989, eTNum=139709}
2020-06-17 17:59:33,438 INFO com.cs.pt.mr.streams.AaggregatorStream [my-app1-aggregation-application-47c109a1-d4ad-4d11-a833-9e24d8b99f6b-StreamThread-1]: Enriched:{OrderId=5, oTNum=5, fTNum=6989, eTNum=158669}
答案 0 :(得分:2)
警告实际上仅是警告,它们告诉您输入主题分区包含无序数据,即同一分区内记录的时间戳记向后。 -这可能是联接正确性的问题,因为它期望输入数据有序。 -所有数据仍将被处理,但是就联接的时间语义而言,结果可能不正确。
不确定为什么您发布的输出不正确:
Enriched:{OrderId=5, oTNum=5, fTNum=9564, eTNum=15742}
Enriched:{OrderId=6, oTNum=6, fTNum=9565, eTNum=15743}
好像是两个不同的键?