我正在使用tf.distribute.Strategy在两个(或更多)gpu上使用MirrorStrategy训练基于unet的模型。以下是我用于网络正向和反向传递的自定义火车循环的代码。出于某种原因,计算了第一个时期的第一批的对数,损失和梯度,但后来卡在了optimizer.apply_gradients(zip(gradients,model.trainable_variables)上。问题是,任何帮助将不胜感激。
import os
import glob
import numpy as np
import tensorflow as tf
from tensorflow.keras.utils import Progbar
import tensorflow.keras.backend as K
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Activation, Dense, BatchNormalization, Dropout
from tensorflow.keras.layers import UpSampling2D, concatenate
from evaluation import diceCoef
tf.config.experimental_run_functions_eagerly(True)
class Train():
def __init__(self, model, lossFunc, optimizer, strategy, epochs, batchSize):
self.epochs = epochs
self.batchSize = batchSize
self.strategy = strategy
#self.lossFunc = lossFunc
self.lossFunc = tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE)
self.optimizer = optimizer
self.model = model
self.history = {'trainloss': [], 'trainmetric':[], 'valmetric': []}
def computeLoss(self, yPred, yTrue):
#loss = tf.reduce_sum(self.lossFunc(yPred, yTrue)) * (1./self.batchSize)
loss = self.lossFunc(yPred, yTrue)
loss = loss * (1. / self.strategy.num_replicas_in_sync)
#print(loss)
return loss
@tf.function
def trainStep(self, x, y, i):
#x = batch[0]
#y = batch[1]
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.float32)
#print(self.model.trainable_variables)
with tf.GradientTape() as tape:
logits = self.model(x, training=True)
logits = tf.cast(logits, tf.float32)
loss = self.computeLoss(logits, y)
#loss = self.lossFunc(logits, y)
#print('loss', loss)
gradients = tape.gradient(loss, self.model.trainable_variables)
print(len(gradients))
print(len(self.model.trainable_variables))
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
return loss, logits
@tf.function
def validStep(self, x, y):
logits = self.model(x, training=False)
loss = self.lossFunc(y, logits)
return loss, logits,
@tf.function
def distributedTrainEpoch(self, dataset, trainSteps):
totalDice = 0
totalLoss = 0
#prog = Progbar(trainSteps-1)
for i, batch in enumerate(dataset):
x = batch[0]
#y = tf.expand_dims(batch[1], axis=-1)
y = batch[1]
batchLoss, logits = self.strategy.run(self.trainStep, args=(x,y,i))
print('batchloss', batchLoss)
#pred = (logits.numpy() > 0.5).astype('int16').astype(np.float16)
#batchDice = self.strategy.run(diceCoef, args=(pred, y))
totalLoss += self.strategy.reduce(tf.distribute.ReduceOp.SUM, batchLoss, axis=None)
#totalDice += self.strategy.reduce(tf.distribute.ReduceOp.SUM, batchDice, axis=None)
#prog.update(i)
return totalLoss, totalDice
@tf.function
def distributedValidEpoch(self, dataset):
totalLoss = 0
totalDice = 0
for d in dataset:
x = d[0]
y = tf.expand_dims(d[1], axis=-1)
loss, logits = self.strategy.run(self.validStep, args=(x, y))
pred = (logits.numpy() > 0.5).astype('int16').astype(np.float16)
dice = self.strategy.run(diceCoef, args=(pred, y))
totalLoss += self.strategy.reduce(tf.distribute.ReduceOp.SUM, loss, axis=None)
totalDice += self.strategy.reduce(tf.distribute.ReduceOp.SUM, dice, axis=None)
return totalLoss, totalDice
def forward(self, trainDataset, validDataset, trainSteps, validSteps):
for e in range(self.epochs):
tf.print('Epoch: {}/{}...'.format(e+1, self.epochs), end="")
trainLoss, trainDice = self.distributedTrainEpoch(trainDataset, trainSteps)
avgTrainDice = trainDice.numpy()[0] / trainSteps
avgTrainLoss = trainLoss.numpy() / trainSteps
print('train', avgTrainDice)
print('loss', avgTrainLoss)
tf.print(' Epoch: {}/{}, loss - {:.2f}, dice - {:.2f}'.format(e+1,
self.epochs, avgTrainLoss, avgTrainDice), end="")
valLoss, valDice = self.distributedValidEpoch(validDataset)
avgValidDice = valDice.numpy()[0] / validSteps
avgValidLoss = valLoss.numpy() / validSteps
self.history['trainmetric'].append(avgTrainDice)
self.history['trainloss'].append(avgTrainLoss)
self.history['valmetric'].append(avgValidDice)
self.history['valmetric'].append(avgValidLoss)
tf.print(' val_loss - {:.3f}, val_dice - {:.3f}'.format(avgValidLoss, avgValidDice))
return self.model, history
这是另一个脚本的代码部分,该脚本设置了策略范围,构建了模型并调用了训练类。
with strategy.scope():
if model == 'fcn8':
print('Model: {}'.format(model))
with tf.device('/cpu:0'):
if api == 'functional':
fcn = FCN()
model = fcn.getFCN8()
elif api=='subclass':
model = FCN()
elif model == 'unet':
print('Model: {}'.format(model))
with tf.device('/cpu:0'):
if api=='functional':
unetModel = unet2.UnetFunc()
model = unetModel.unet()
elif api=='subclass':
model = unetsc.UnetSC(filters=filters)
model.build((1, imgDims, imgDims, 3))
elif model == 'unetmini':
print('Model: {}'.format(model))
with tf.device('/cpu:0'):
if api == 'functional':
unetminiModel = UnetMini(filters=filters)
model = unetminiModel.unetmini()
elif api=='subclass':
model = UnetMini(filters)
elif model == 'resunet':
print('Model: {}'.format(model))
with tf.device('/cpu:0'):
if api=='functional':
resunetModel = ResUnet(filters)
model = resunetModel.ResUnetFunc()
elif api=='subclass':
model = ResunetSc(filters)
elif model == 'resunet-a':
print('Model: {}'.format(model))
with tf.device('/cpu:0'):
if api=='functional':
resunetModel = ResUnetA(filters)
model = resunetModel.ResUnetAFunc()
elif api=='subclass':
model = ResunetASc(filters)
elif model == 'attention':
print('Model: {}'.format(model))
with tf.device('/cpu:0'):
if api == 'functional':
attenModel = AttenUnetFunc(filters)
model = attenModel.attenUnet()
elif api=='subclass':
model = AttenUnetSC(filters)
else:
raise ValueError('No model requested, please update config file')
# print('trainable variables', str(model.trainable_variables))
trainer = train.Train(model, loss, optimizer, strategy, epoch, batchSize)
trainDistDataset = strategy.experimental_distribute_dataset(trainDataset)
validDistDataset = strategy.experimental_distribute_dataset(validDataset)
model, history = trainer.forward(trainDistDataset, validDistDataset, trainSteps, validSteps)
子类化的unet模型如下:
class UnetSC(Model):
def __init__(self, filters=[16,32,64,128, 256], finalActivation='sigmoid', activation='relu',
nOutput=1, kSize=(3,3), pSize=(2,2), dropout=0, normalize=True, padding='same', dtype='float32'):
super(UnetSC, self).__init__(dtype=dtype)
self.normalize = normalize
self.conve1_1 = Conv2D(filters[0], kSize, activation='relu', padding='same', name='greg')
self.batchnorm1 = BatchNormalization(name='greggggggg')
self.conve1_2 = Conv2D(filters[0], kSize, activation='relu', padding='same')
self.batchnorm2 = BatchNormalization()
self.pool1 = MaxPooling2D((2, 2))
self.conve2_1 = Conv2D(filters[1], kSize, activation='relu', padding='same')
self.batchnorm3 = BatchNormalization()
self.conve2_2 = Conv2D(filters[1], kSize, activation='relu', padding='same')
self.batchnorm4 = BatchNormalization()
self.pool2 = MaxPooling2D((2, 2))
self.conve3_1 = Conv2D(filters[2], kSize, activation='relu', padding='same')
self.batchnorm5 = BatchNormalization()
self.conve3_2 = Conv2D(filters[2], kSize, activation='relu', padding='same')
self.batchnorm6 = BatchNormalization()
self.pool3 = MaxPooling2D((2, 2))
self.conve4_1 = Conv2D(filters[3], kSize, activation='relu', padding='same')
self.batchnorm7 = BatchNormalization()
self.conve4_2 = Conv2D(filters[3], kSize, activation='relu', padding='same', name='finalencoder')
self.batchnorm8 = BatchNormalization()
self.pool4 = MaxPooling2D((2, 2))
self.convb_1 = Conv2D(filters[4], kSize, activation='relu', padding='same')
self.batchnorm9 = BatchNormalization()
self.convb_2 = Conv2D(filters[4], kSize, activation='relu', padding='same')
self.batchnorm10 = BatchNormalization()
self.upsampling1 = UpSampling2D((2, 2))
self.conc1 = Concatenate()
self.convd1_1 = Conv2D(filters[3], kSize, activation='relu', padding='same')
self.batchnorm11 = BatchNormalization()
self.convd1_2 = Conv2D(filters[3], kSize, activation='relu', padding='same')
self.batchnorm12 = BatchNormalization()
self.upsampling2 = UpSampling2D((2, 2))
self.conc2 = Concatenate()
self.convd2_1 = Conv2D(filters[2], kSize, activation='relu', padding='same')
self.batchnorm13 = BatchNormalization()
self.convd2_2 = Conv2D(filters[2], kSize, activation='relu', padding='same')
self.batchnorm14 = BatchNormalization()
self.upsampling3 = UpSampling2D((2, 2))
self.conc3 = Concatenate()
self.convd3_1 = Conv2D(filters[1], kSize, activation='relu', padding='same')
self.batchnorm15 = BatchNormalization()
self.convd3_2 = Conv2D(filters[1], kSize, activation='relu', padding='same')
self.batchnorm16 = BatchNormalization()
self.upsampling4 = UpSampling2D((2, 2))
self.conc4 = Concatenate()
self.convd4_1 = Conv2D(filters[0], kSize, activation='relu', padding='same')
self.batchnorm17 = BatchNormalization()
self.convd4_2 = Conv2D(filters[0], kSize, activation='relu', padding='same')
self.batchnorm18 = BatchNormalization()
self.final = Conv2D(nOutput, kernel_size=(1, 1), strides=(1, 1), activation=finalActivation)
def call(self, x, training=True):
e1 = self.conve1_1(x)
e1 = self.batchnorm1(e1)
e1 = self.conve1_2(e1)
e1 = self.batchnorm2(e1)
p1 = self.pool1(e1)
e2 = self.conve2_1(p1)
e2 = self.batchnorm3(e2)
e2 = self.conve2_2(e2)
e2 = self.batchnorm4(e2)
p2 = self.pool2(e2)
e3 = self.conve3_1(p2)
e3 = self.batchnorm5(e3)
e3 = self.conve3_2(e3)
e3 = self.batchnorm6(e3)
p3 = self.pool3(e3)
e4 = self.conve4_1(p3)
e4 = self.batchnorm7(e4)
e4 = self.conve4_2(e4)
e4 = self.batchnorm8(e4)
p4 = self.pool4(e4)
b = self.convb_1(p4)
b = self.batchnorm9(b)
b = self.convb_2(b)
b = self.batchnorm10(b)
d1 = self.upsampling1(b)
d1 = self.conc1([e4, d1])
d1 = self.convd1_1(d1)
d1 = self.batchnorm11(d1)
d1 = self.convd1_2(d1)
d1 = self.batchnorm12(d1)
d2 = self.upsampling2(d1)
d2 = self.conc2([e3, d2])
d2 = self.convd2_1(d2)
d2 = self.batchnorm13(d2)
d2 = self.convd2_2(d2)
d2 = self.batchnorm14(d2)
d3 = self.upsampling3(d2)
d3 = self.conc3([e2, d3])
d3 = self.convd3_1(d3)
d3 = self.batchnorm15(d3)
d3 = self.convd3_2(d3)
d3 = self.batchnorm16(d3)
d4 = self.upsampling4(d3)
d4 = self.conc4([e1, d4])
d4 = self.convd4_1(d4)
d4 = self.batchnorm17(d4)
d4 = self.convd4_2(d4)
d4 = self.batchnorm18(d4)
x = self.final(d4)
return x
u = UnetSC()
u = u.build((1, 256,256,3))
The error output trace
Using TensorFlow backend.
Now executing following model: unet_32_adam_diceloss_FR_0_2.5x_germ_32
2020-06-12 18:14:00.672680: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-06-12 18:14:00.815119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:3f:00.0 name: Tesla V100-PCIE-16GB computeCapability: 7.0
coreClock: 1.38GHz coreCount: 80 deviceMemorySize: 15.75GiB deviceMemoryBandwidth: 836.37GiB/s
2020-06-12 18:14:00.816539: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 1 with properties:
pciBusID: 0000:40:00.0 name: Tesla V100-PCIE-16GB computeCapability: 7.0
coreClock: 1.38GHz coreCount: 80 deviceMemorySize: 15.75GiB deviceMemoryBandwidth: 836.37GiB/s
2020-06-12 18:14:00.817342: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-06-12 18:14:00.820640: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-06-12 18:14:00.823040: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-06-12 18:14:00.823833: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-06-12 18:14:00.826794: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-06-12 18:14:00.829026: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-06-12 18:14:00.834643: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-06-12 18:14:00.839962: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0, 1
2020-06-12 18:14:00.840532: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA
2020-06-12 18:14:00.855173: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2200000000 Hz
2020-06-12 18:14:00.857769: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x58fdc10 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-12 18:14:00.857804: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2020-06-12 18:14:01.277928: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x59680f0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-06-12 18:14:01.278008: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Tesla V100-PCIE-16GB, Compute Capability 7.0
2020-06-12 18:14:01.278031: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (1): Tesla V100-PCIE-16GB, Compute Capability 7.0
2020-06-12 18:14:01.284602: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:3f:00.0 name: Tesla V100-PCIE-16GB computeCapability: 7.0
coreClock: 1.38GHz coreCount: 80 deviceMemorySize: 15.75GiB deviceMemoryBandwidth: 836.37GiB/s
2020-06-12 18:14:01.291638: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 1 with properties:
pciBusID: 0000:40:00.0 name: Tesla V100-PCIE-16GB computeCapability: 7.0
coreClock: 1.38GHz coreCount: 80 deviceMemorySize: 15.75GiB deviceMemoryBandwidth: 836.37GiB/s
2020-06-12 18:14:01.291808: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-06-12 18:14:01.291883: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-06-12 18:14:01.291935: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-06-12 18:14:01.291988: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-06-12 18:14:01.292039: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-06-12 18:14:01.292086: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-06-12 18:14:01.292151: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-06-12 18:14:01.304148: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0, 1
2020-06-12 18:14:01.304295: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-06-12 18:14:01.312107: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-06-12 18:14:01.312143: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0 1
2020-06-12 18:14:01.312164: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N Y
2020-06-12 18:14:01.312180: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 1: Y N
2020-06-12 18:14:01.318105: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 14864 MB memory) -> physical GPU (device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:3f:00.0, compute capability: 7.0)
2020-06-12 18:14:01.320434: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 14864 MB memory) -> physical GPU (device: 1, name: Tesla V100-PCIE-16GB, pci bus id: 0000:40:00.0, compute capability: 7.0)
Epoch: 1/40...WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
2020-06-12 18:14:16.135798: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-06-12 18:14:18.493751: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
74
74
74
74
然后就贴在这里。请帮忙!
答案 0 :(得分:0)
本来可以作为评论,但没有足够的声誉。您是否尝试过没有所有这些@tf.function
装饰器,是否一样?而且如果问题出在trainStep
函数中,也许您可以尝试使用变体,我认为您可能需要将trainable_variables作为该函数的参数传递。
答案 1 :(得分:0)
我设法自己解决了这个问题,这是训练我的网络的整个代码段,它使用镜像策略在多个GPU上进行训练。这将计算每个gpu的每个副本丢失和骰子得分,并将它们相加。请注意,在计算损耗中,正确的方法是计算所有像素的损耗并除以总尺寸,以获得每幅图像的平均损耗(我们得到每个像素的损耗值)。
import os
import tensorflow as tf
import numpy as np
import datetime
import tensorflow.keras.backend as K
from tensorflow.keras.utils import Progbar
from custom_loss_classes import WeightedBinaryCrossEntropy
from evaluation import diceCoef
#import memory_saving_gradients
#tf.__dict__["gradients"] = memory_saving_gradients.gradients_speed
class DistributeTrain():
def __init__(self, epochs, model, optimizer, lossObject, batchSize,
strategy, trainSteps, testNum, imgDims, threshold, modelName, currentTime, currentDate):
self.epochs = epochs
self.batchSize = batchSize
self.strategy = strategy
self.loss_object = lossObject
self.optimizer = optimizer
self.metric = diceCoef
self.model = model
self.trainSteps = trainSteps
self.testNum = testNum
self.imgDims = imgDims
self.history = {'trainloss': [], 'trainmetric':[], 'valmetric': [],'valloss':[]}
self.threshold = threshold
self.modelName = modelName
self.currentTime = currentTime
self.currentDate = currentDate
def computeLoss(self, label, predictions):
loss = self.loss_object(label, predictions)
print('loss', loss)
loss = tf.reduce_sum(loss) * (1. / (self.imgDims*self.imgDims*self.batchSize))
return loss * (1/self.strategy.num_replicas_in_sync)
def computeDice(self, yTrue, yPred):
dice = self.metric(yTrue, yPred)
dice = dice * (1 / self.strategy.num_replicas_in_sync)
return dice
def trainStep(self, inputs):
x, y = inputs
with tf.GradientTape() as tape:
logits = self.model(x, training=True)
loss = self.computeLoss(y, logits)
yPred = tf.cast((logits > 0.5), tf.float32)
dice = self.computeDice(y, yPred)
gradients = tape.gradient(loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
return loss, dice
def testStep(self, inputs):
x, y = inputs
predictions = self.model(x, training=False)
loss = self.loss_object(y, predictions)
yPred = tf.cast((predictions > 0.5), tf.float32)
#print('y',np.unique(y.numpy()))
#print('yPred', np.unique(yPred.numpy()))
dice = self.computeDice(y, yPred)
loss = tf.reduce_sum(loss) * (1. / (self.imgDims*self.imgDims*self.batchSize))
return loss, dice
@tf.function
def distributedTrainEpoch(self, batch):
#totalLoss = 0.0
#totalDice = 0.0
#i = 0
#prog = Progbar(self.trainSteps-1)
#for batch in trainData:
#i+=1
replicaLoss, replicaDice = self.strategy.run(self.trainStep, args=(batch,))
# totalLoss += self.strategy.reduce(tf.distribute.ReduceOp.SUM, replicaLoss, axis=None)
# totalDice += self.strategy.reduce(tf.distribute.ReduceOp.SUM, replicaDice, axis=None)
#prog.update(i)
#return totalLoss, totalDice
return replicaLoss, replicaDice
#ToDo: shitty hack to include progbar in distributed train function. need a
#way of converting tensor i to integer
def getDistTrainEpoch(self, trainData):
totalLoss = 0.0
totalDice = 0.0
i = 0
prog = Progbar(self.trainSteps-1)
for batch in trainData:
replicaLoss, replicaDice = self.distributedTrainEpoch(batch)
totalLoss += self.strategy.reduce(tf.distribute.ReduceOp.SUM, replicaLoss, axis=None)
totalDice += self.strategy.reduce(tf.distribute.ReduceOp.SUM, replicaDice, axis=None)
prog.update(i)
i+=1
return totalLoss, totalDice
@tf.function
def distributedTestEpoch(self, validData):
totalLoss = 0.0
totalDice = 0.0
for d in validData:
loss, dice = self.strategy.run(self.testStep, args=(d,))
totalLoss += self.strategy.reduce(tf.distribute.ReduceOp.SUM, loss, axis=None)
totalDice += self.strategy.reduce(tf.distribute.ReduceOp.SUM, dice, axis=None)
return totalLoss, totalDice
#we wantt o stop on a moving average value, min threshold dice and min epoch iterations
def earlyStop(self, valDice, epoch):
ma = np.mean(np.array(self.history['valmetric'][-5:]))
#removed moving average
stop = True if epoch > self.threshold['epochs'] and valDice > self.threshold['metric'] else False
return stop
def forward(self, trainDistDataset, testDistDataset):
currentTime = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
trainLogDir = os.path.join('tensorboard_logs', 'train', self.currentDate, self.modelName + '_' + self.currentTime)
testLogDir = os.path.join('tensorboard_logs', 'test', self.currentDate, self.modelName + '_' + self.currentTime)
trainWriter = tf.summary.create_file_writer(trainLogDir)
testWriter = tf.summary.create_file_writer(testLogDir)
for epoch in range(self.epochs):
#trainLoss, trainDice = self.distributedTrainEpoch(trainDistDataset)
trainLoss, trainDice = self.getDistTrainEpoch(trainDistDataset)
epochTrainLoss, epochTrainDice = float(trainLoss/self.trainSteps), float(trainDice/self.trainSteps)
with trainWriter.as_default():
tf.summary.scalar('loss', epochTrainLoss, step=epoch)
tf.summary.scalar('dice', epochTrainDice, step=epoch)
tf.print(' Epoch: {}/{}, loss - {:.2f}, dice - {:.2f}, lr - {:.5f}'.format(epoch+1, self.epochs, epochTrainLoss,
epochTrainDice, 1), end="")
testLoss, testDice = self.distributedTestEpoch(testDistDataset)
epochTestLoss, epochTestDice = float(testLoss/self.testNum), float(testDice/self.testNum)
with testWriter.as_default():
tf.summary.scalar('loss', epochTestLoss, step=epoch)
tf.summary.scalar('Dice', epochTestDice, step=epoch)
tf.print(' val_loss - {:.3f}, val_dice - {:.3f}'.format(epochTestLoss, epochTestDice))
self.history['trainmetric'].append(epochTrainDice)
self.history['trainloss'].append(epochTrainLoss)
self.history['valmetric'].append(epochTestDice)
self.history['valloss'].append(epochTestLoss)
if self.earlyStop(epochTestDice, epoch):
print('Stopping early on epoch: {}'.format(epoch))
break
return self.model, self.history