我是pyspark的新手,我在数据转换方面面临一些挑战。我正在使用AWS胶水来完成这项工作。当前数据如下:
+-----------------+-----+------+-----+
| Country |Code |1969 |1979 |
+-----------------+------------------+
| United States | USA | 1234 | 4569|
--------------------------------------
我需要将数据转置为此:
+-----------------+-----+-------+----------+
|Country |Code | Year | Population|
+-----------------+-------------------------
|United States. |USA | 1969 | 1234. |
--------------------------------------------
|United States. |USA | 1970 | 4569. |
--------------------------------------------
我试图尝试使用胶水映射功能,但这要复杂得多。任何帮助将不胜感激。
答案 0 :(得分:1)
我认为您需要的是一个相当于熊猫融化的Pyspark:
from typing import Iterable
from pyspark.sql import functions as F
from pyspark.sql import DataFrame
def melt(
df: DataFrame,
id_vars: Iterable[str], value_vars: Iterable[str],
var_name: str="variable", value_name: str="value") -> DataFrame:
"""Convert :class:`DataFrame` from wide to long format."""
# Create array<struct<variable: str, value: ...>>
_vars_and_vals = array(*(
struct(lit(c).alias(var_name), col(c).alias(value_name))
for c in value_vars))
# Add to the DataFrame and explode
_tmp = df.withColumn("_vars_and_vals", explode(_vars_and_vals))
cols = id_vars + [
col("_vars_and_vals")[x].alias(x) for x in [var_name, value_name]]
return _tmp.select(*cols)
然后
melt(df, id_vars=['Country', 'Code'], value_vars=['1969', '1979']
var_name=['Year'], value_name=['Population'] ).show()