熊猫-将功能应用于其他所有行

时间:2020-06-12 03:36:22

标签: python pandas

我有一个数据框,而我想要做的基本上是在同一位置将成败团队的得分制成表格。我试图放置一个lambda函数,但没有成功。我当前拥有的数据框是第一个,我想以第二个问题的形式创建一个数据集。谢谢。

enter image description here

an

GameId      Team    Home    Score
1           Spirit  1       81
1           Rockers 0       66
2           Lightning   1   73
2           Flames  0       82


Game ID Home Team   Away Team   Home Score  Away Score
1       Spirit      Rockers     81          66
2       Lightning   Flames      73          82

3 个答案:

答案 0 :(得分:4)

尝试一下:

输入:

import pandas as pd

raw_df = pd.DataFrame({"GameId": [1, 1, 2, 2],
                       "Team": ["Spirit", "Rockets", "Lighting", "Flames"],
                       "Home": [1, 0, 1, 0],
                       "Score": [81, 66, 73, 82]})
print(raw_df)

输出:

   GameId      Team  Home  Score
0       1    Spirit     1     81
1       1   Rockets     0     66
2       2  Lighting     1     73
3       2    Flames     0     82

输入:

raw_df.loc[:, "Home"] = raw_df.Home.map({
        1: "Home",
        0: "Away"
    })

result = raw_df.pivot_table(index=["GameId"],
                            columns=["Home"],
                            values=["Team", "Score"],
                            aggfunc={"Team": lambda team: " ".join(team.tolist()),
                                     "Score": lambda score: score})

result = result.sort_index(axis="columns", level=[0, "Home"], ascending=False)
result.columns = [' '.join(reversed(col)) for col in result.columns]
print(result)

输出:

       Home Team Away Team  Home Score  Away Score
GameId                                            
1         Spirit   Rockets          81          66
2       Lighting    Flames          73          82

答案 1 :(得分:2)

import pandas as pd
df=pd.DataFrame({'GameId':[1,1,2,2],'Team': ['Spirit','Rockers','Lighting','Flames'],'Home':[1,0,1,0],'Score':[81,66,73,82]})
merge=pd.merge(df,df,left_on='GameId',right_on='GameId')
merge=merge[merge['Home_x']!=merge['Home_y']]
merge=merge.drop_duplicates(subset=['GameId'])
merge=merge[['GameId','Team_x','Team_y','Score_x','Score_y']]
merge.columns=['GameId','Home Team','Away Team','Home Score','Away Score']

enter image description here

说明:我正在使用pd.merge()执行自连接。之后,我要在主场和客场列中删除具有相同团队名称的行。之后,在gameId上删除重复项,然后选择所需的列并重命名

答案 2 :(得分:2)

首先使用async function fetchAllIdsInGroup(){ let groupIds = []; let groupNumber = document.querySelector('#groupNumber').value; await fetch('http://localhost:1234/allIdsInGroup/' + groupNumber) .then(response => response.json()) .then((data) => { data.forEach(element => { groupIds.push(element['_id']) }); }); return groupIds; } async function printAllIdsInGroup(){ let testArray = ['a', 'b', 'c']; console.log(testArray[0]); // this works // outputs // a let groupIds = await fetchAllIdsInGroup(); console.log(groupIds[0]); } ,然后执行一些列表理解,以将元组中的列重命名为所需的名称(由于将.pivot设置为枢轴时将其设置为列,因此这些列为元组)。 Home将名称从将团队元组加入列表理解中时,从团队到家团队。

[::-1]

输出:

df = pd.pivot(df, columns='Home', values=['Team','Score'], index='GameId').reset_index()
df.columns = [' '.join(str(s).strip().replace('1', 'Home').replace('0', 'Away') for s in col[::-1]) for col in df.columns]