我正在尝试在胶水上运行ETL作业,在此我将数据从mongodb提取到spark数据帧中并粘贴到胶水中,然后将其加载到雪花中。
这是Spark数据框的示例架构
|-- login: struct (nullable = true)
| |-- login_attempts: integer (nullable = true)
| |-- last_attempt: timestamp (nullable = true)
|-- name: string (nullable = true)
|-- notifications: struct (nullable = true)
| |-- bot_review_queue: boolean (nullable = true)
| |-- bot_review_queue_web_push: boolean (nullable = true)
| |-- bot_review_queue_web_push_admin: boolean (nullable = true)
| |-- weekly_account_summary: struct (nullable = true)
| | |-- enabled: boolean (nullable = true)
| |-- weekly_summary: struct (nullable = true)
| | |-- enabled: boolean (nullable = true)
| | |-- day: integer (nullable = true)
| | |-- hour: integer (nullable = true)
| | |-- minute: integer (nullable = true)
|-- query: struct (nullable = true)
| |-- email_address: string (nullable = true)
我正在尝试将数据按原样加载到雪花中,并将结构列作为雪花中的json有效负载加载,但是会引发以下错误
An error occurred while calling o81.collectToPython.com.mongodb.spark.exceptions.MongoTypeConversionException:Cannot cast ARRAY into a StructType
我还尝试将struct列转换为字符串并加载它,但它或多或少会引发相同的错误
An error occurred while calling o106.save. com.mongodb.spark.exceptions.MongoTypeConversionException: Cannot cast STRING into a StructType
如果能获得帮助,请多谢。
下面用于投射和加载的代码。
dynamic_frame = glueContext.create_dynamic_frame.from_options(connection_type="mongodb",
connection_options=read_mongo_options)
user_df_cast = user_df.select(user_df.login.cast(StringType()),'name',user_df.notifications.cast(StringType()))
datasinkusers = user_df_cast.write.format(SNOWFLAKE_SOURCE_NAME).options(**sfOptions).option("dbtable", "users").mode("append").save()
答案 0 :(得分:1)
如果您在Snowflake中的users
表具有以下架构,则不需要广播,因为StructType
fields of a SparkSQL DataFrame将自动映射到VARIANT
type in Snowflake:>
CREATE TABLE users (
login VARIANT
,name STRING
,notifications VARIANT
,query VARIANT
)
只需执行以下操作,无需任何转换,因为Snowflake Spark Connector understands the data-type会自行转换为适当的JSON表示形式:
user_df = glueContext.create_dynamic_frame.from_options(
connection_type="mongodb",
connection_options=read_mongo_options
)
user_df
.toDF()
.write
.format(SNOWFLAKE_SOURCE_NAME)
.options(**sfOptions)
.option("dbtable", "users")
.mode("append")
.save()
如果您绝对需要将StructType
字段存储为纯JSON字符串,则需要使用to_json
SparkSQL function显式转换它们:
from pyspark.sql.functions import to_json
user_df_cast = user_df.select(
to_json(user_df.login),
user_df.name,
to_json(user_df.notifications)
)
这会将JSON字符串存储为简单的VARCHAR
类型,这样就不会在没有semi-structured data storage and querying capabilities步骤(效率低下)的情况下直接利用Snowflake的PARSE_JSON
。
考虑使用上面显示的VARIANT
方法,这将允许您直接在字段上执行查询:
SELECT
login:login_attempts
,login:last_attempt
,name
,notifications:weekly_summary.enabled
FROM users