我有以下df(问题末尾的dput()
):
link person type ID1 bin
1311752 793482 514677 departure 347 36900
1020897 66154 514677 arrival 379 36900
1376554 858880 514679 departure 374 42300
1374956 858880 514679 arrival 374 46800
1567933 992830 514680 arrival 140 31500
1568804 992830 514680 departure 140 32400
726546 87723 514681 departure 42 25200
726547 481929 514681 arrival 233 27900
723875 481929 514681 departure 233 45000
1396595 87723 514681 arrival 42 45900
我想要创建一个新的df,在其中我看到哪个person
从(type=="departure"
)哪个区域(ID1
)到(type=="arrival"
)哪个区域(ID1
)和出发地bin
。
从上面示例的最后4行可以看出,同一个person
可能有多个arrival
和departure
。因此,重要的是将彼此最接近的两个组合(因此最小的增量bin
)。
因此,新的df应该看起来像这样:
person departure arrival bin
514677 347 379 36900
514679 374 374 42300
514681 42 233 25200
514681 233 42 45000
...
如您所见,人514681
在42至233之间来回走动。
我想您可以说我想基于person
汇总数据。
我不太确定该如何完成,并且会很高兴获得帮助!
structure(list(link = c("793482", "66154", "858880", "858880",
"992830", "992830", "858880", "858880", "514143", "87723", "481929",
"481929", "87723", "87723", "964586", "87723", "1013453", "pt_8591034",
"973606", "pt_8591034", "481929", "481929", "87723", "87723",
"399738", "399738", "87723", "738635", "481929", "738635", "481929",
"738635", "301867", "89053", "92917", "92917", "981899", "981899",
"89053", "92917", "89053", "89053", "699715", "699715", "89053",
"452176", "738635", "452176", "738635", "641738", "712438", "699715",
"215822", "621953", "634264", "362138", "634264", "634264", "763815",
"763815", "631191", "631191", "763815", "763815", "634264", "634264",
"10826", "10826", "634264", "999977", "1046826", "1046826", "634264",
"999977", "848815", "848815", "999977", "999977", "848815", "848815",
"999977", "261239", "993653", "287772", "763815", "763815", "287772",
"494898", "824071", "594222", "494898", "494898", "452642", "452642",
"494898", "494898", "452642", "494898", "787840", "442285"),
person = c(514677L, 514677L, 514679L, 514679L, 514680L, 514680L,
514680L, 514680L, 514680L, 514681L, 514681L, 514681L, 514681L,
514682L, 514682L, 514683L, 514683L, 514684L, 514684L, 514684L,
514684L, 514684L, 514684L, 514685L, 514685L, 514685L, 514685L,
514688L, 514688L, 514688L, 514688L, 514690L, 514690L, 514707L,
514707L, 514707L, 514707L, 514707L, 514707L, 514708L, 514708L,
514709L, 514709L, 514709L, 514709L, 514710L, 514710L, 514710L,
514710L, 514711L, 514711L, 514733L, 514733L, 514757L, 514757L,
514757L, 514757L, 514759L, 514759L, 514759L, 514759L, 514759L,
514759L, 514759L, 514759L, 514760L, 514760L, 514760L, 514760L,
514774L, 514774L, 514774L, 514774L, 514774L, 514774L, 514774L,
514774L, 514774L, 514774L, 514774L, 514774L, 514782L, 514782L,
514786L, 514786L, 514786L, 514786L, 514802L, 514802L, 514802L,
514802L, 514803L, 514803L, 514803L, 514803L, 514803L, 514803L,
514804L, 514804L, 514805L), type = c("departure", "arrival",
"departure", "arrival", "arrival", "departure", "arrival",
"departure", "arrival", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"arrival", "departure", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"departure", "arrival", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"departure", "arrival", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"arrival", "departure", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"departure", "arrival", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"departure", "arrival", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"departure", "arrival", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"departure", "arrival", "departure", "arrival", "departure",
"arrival", "departure", "arrival", "departure", "arrival",
"departure", "arrival", "departure"), ID1 = c(347L, 379L,
374L, 374L, 140L, 140L, 374L, 374L, 401L, 42L, 233L, 233L,
42L, 42L, 496L, 42L, 235L, 172L, 231L, 172L, 233L, 233L,
42L, 42L, 267L, 267L, 42L, 58L, 233L, 58L, 233L, 58L, 292L,
96L, 264L, 264L, 26L, 26L, 96L, 264L, 96L, 96L, 266L, 266L,
96L, 57L, 58L, 57L, 58L, 123L, 55L, 266L, 77L, 412L, 407L,
410L, 407L, 407L, 297L, 297L, 169L, 169L, 297L, 297L, 407L,
407L, 566L, 566L, 407L, 403L, 380L, 380L, 407L, 403L, 436L,
436L, 403L, 403L, 436L, 436L, 403L, 545L, 324L, 448L, 297L,
297L, 448L, 209L, 152L, 205L, 209L, 209L, 204L, 204L, 209L,
209L, 204L, 209L, 383L, 181L), bin = c(36900, 36900, 42300,
46800, 31500, 32400, 34200, 61200, 72000, 25200, 27900, 45000,
45900, 27900, 31500, 30600, 33300, 56700, 56700, 60300, 61200,
63900, 65700, 28800, 32400, 75600, 77400, 24300, 26100, 45900,
47700, 51300, 53100, 27900, 31500, 36900, 38700, 41400, 42300,
62100, 63900, 15300, 16200, 45900, 47700, 35100, 35100, 67500,
67500, 63900, 65700, 45900, 46800, 63000, 64800, 90000, 90900,
27000, 28800, 45000, 46800, 63000, 67500, 68400, 72000, 48600,
50400, 53100, 55800, 37800, 38700, 40500, 41400, 47700, 48600,
51300, 52200, 62100, 63000, 63900, 64800, 22500, 24300, 19800,
20700, 54000, 57600, 21600, 22500, 55800, 56700, 36900, 38700,
51300, 52200, 62100, 63900, 30600, 34200, 33300)), row.names = c(1311752L,
1020897L, 1376554L, 1374956L, 1567933L, 1568804L, 1378922L, 1378604L,
796332L, 1396610L, 726547L, 723875L, 1396595L, 1398179L, 1513826L,
1396821L, 27568L, 1607272L, 1542798L, 1606758L, 721147L, 720198L,
1397549L, 1398033L, 621908L, 626763L, 1397225L, 1184210L, 729418L,
1185149L, 728038L, 1183207L, 465692L, 1426554L, 1460666L, 1457289L,
1551709L, 1550925L, 1429217L, 1461183L, 1427235L, 1428930L, 1117203L,
1119814L, 1431191L, 683362L, 1183236L, 684338L, 1184602L, 990483L,
1142535L, 1125893L, 288323L, 947577L, 966966L, 544664L, 969372L,
964351L, 1230180L, 1231933L, 960341L, 960438L, 1238195L, 1241438L,
965853L, 964667L, 105034L, 106179L, 966724L, 1586724L, 72120L,
76232L, 969048L, 1587092L, 1360314L, 1361152L, 1585499L, 1586919L,
1361549L, 1359631L, 1587109L, 378600L, 1573640L, 428095L, 1236840L,
1235995L, 430374L, 757402L, 1331227L, 916001L, 760182L, 757620L,
686066L, 685765L, 759010L, 760140L, 687455L, 758617L, 1287055L,
676520L), class = "data.frame")
答案 0 :(得分:1)
对于dplyr
,可能是这样的:
library(dplyr)
data %>%
group_by(person) %>%
summarize(departure = ID1[type == "departure"][1],
arrival = ID1[type == "arrival"][1],
bin = bin[type == "departure"][1])
这里是试图满足附加逻辑的改进版本。由于问题还不太清楚,所以我可以肯定它还不是100%罚款。
data %>%
arrange(person, bin) %>%
group_by(person) %>%
mutate(pair = rep(row_number(), each = 2, length.out = n())) %>%
group_by(person, pair) %>%
summarize(departure = ID1[type == "departure"][1],
arrival = ID1[type == "arrival"][1],
bin = bin[type == "departure"][1])
答案 1 :(得分:0)
在基数R中,我们可以拆分数据,仅保留具有超过1行(表示有到达和离开)的人员/箱位组合,然后提取数据。
splitdata <- split(df,with(df,paste0(person,bin)))
splitdata <- splitdata[sapply(splitdata,nrow)>1]
do.call(rbind,
lapply(splitdata, function(x)
data.frame(
person = x[1,2],
departure = x$ID1[x$type == "departure"],
arrival = x$ID1[x$type == "arrival"],
bin = x[1,5])))
输出:
person departure arrival bin
51467736900 514677 347 379 36900
51468456700 514684 231 172 56700
51471035100 514710 57 58 35100
51471067500 514710 58 57 67500