我正在为我的MLPClassifier模型进行超参数调整。我正在尝试使用gridsearch,但是出了点问题,我无法解决。
这是模型:
data = pd.read_csv("Xy_train.csv")
data = data.loc[(data.age <= 90) & (data.thal != 0)]
x = data.drop(columns=['y', 'id'])
y = data.y
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=986)
scaler = StandardScaler()
x_train_s = scaler.fit_transform(x_train)
x_test_s = scaler.fit_transform(x_test)
model = MLPClassifier(random_state=986,
hidden_layer_sizes=(15),
max_iter=200,
activation='relu',
verbose=True,
learning_rate_init=0.01)
model.fit(x_train_s, y_train)
x_train = np.linspace(-5, 5, 50)
y_train = np.linspace(-5, 5, 50)
predictions = pd.DataFrame()
print(f"Accuracy: {accuracy_score(y_true=y_test, y_pred=model.predict(x_test_s)):.3f}")
print(confusion_matrix(y_true=y_test, y_pred=model.predict(x_test_s)))
这是我的网格搜索:
epochs = [5, 10]
batches = [5, 10, 100]
optimizers = ['lbfgs', 'sgd', 'adam']
hyperparameters = dict(optimizer=optimizers, epochs=epochs, batch_size=batches)
grid = GridSearchCV(estimator=model, cv=3, param_grid=hyperparameters)
grid.fit(x_train, y_train)
我得到了很多错误,但我认为可能最相关的是:使用estimator.get_params().keys()
检查可用参数列表。
错误是:
line 49, in <module>
grid.fit(x_train, y_train)
line 754, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
line 209, in apply_async
result = ImmediateResult(func)
line 233, in set_params
raise ValueError('Invalid parameter %s for estimator %s. '
ValueError: Invalid parameter epochs for estimator MLPClassifier(activation='relu', alpha=0.0001, batch_size=5, beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=15, learning_rate='constant',
learning_rate_init=0.01, max_fun=15000, max_iter=200,
momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,
power_t=0.5, random_state=986, shuffle=True, solver='adam',
tol=0.0001, validation_fraction=0.1, verbose=True,
warm_start=False). Check the list of available parameters with `estimator.get_params().keys()'
但是我确实检查了参数键,看起来还不错。
答案 0 :(得分:0)
在您的hyperparameters
网格中:
hyperparameters = dict(optimizer=optimizers, epochs=epochs, batch_size=batches)
您要求输入不存在的超参数,例如optimizer
和epochs
,因此会出错。
根据documentation,您应该分别要求solver
和max_iter
,即:
hyperparameters = dict(solver=optimizers, max_iter=epochs, batch_size=batches)