TF2 Keras-Keras中的特征工程通过Tensorflow Serving保存了模型

时间:2020-06-05 09:07:53

标签: tensorflow keras tensorflow2.0 tensorflow-serving feature-engineering

用于Keras模型上的预处理/特征工程的Tensorflow 2文档似乎很令人困惑并且不是很友好。

目前,我有一个简单的Keras N层模型,其中TF特征列作为密集层提供。为了进行培训,我使用tf.dataset API读取了CSV文件,并且编写了一个功能工程功能,该功能可以使用dataset.map函数创建新功能。

def feature_engg_features(features):
  #Add new features
  features['nodlgrbyvpatd'] = features['NODLGR'] / features['VPATD']

  return(features)

我可以使用tf.keras.models.save_model方法轻松保存模型。但是,我在弄清楚如何在服务功能中附加feature_engineering步骤时遇到了麻烦。

要求:现在,我想采用上面相同的功能工程功能并将其附加到我的serving function上,以便在通过tensorflow_model_server输入的JSON中,执行相同的功能工程步骤应用。我知道Keras中的lambda Layer选项,但是我想通过saved_model方法做到这一点,但是这里有很多困难。

例如,下面的代码给出错误:

def feature_engg_features(features):
  #Add new features
  features['nodlgrbyvpatd'] = features['NODLGR'] / features['VPATD']
  return(features)

@tf.function
def serving(data):
    data = tf.map_fn(feature_engg_features, data, dtype=tf.float32)

    # Predict
    predictions = m_(data)

version = "1"
tf.keras.models.save_model(
    m_,
    "./exported_model/" + version,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=serving,
    options=None
)

错误:

Only `tf.functions` with an input signature or concrete functions can be used as a signature.

上述错误是因为我没有提供我的Keras模型的InputSignature,但是我无法理解我有13个输入字段,这是期望的输入签名。

所以我想知道是否有人知道解决这个问题的最短方法。这是一个非常基本的要求,对于Keras Tensorflow模型服务,Tensorflow似乎使这一问题变得非常复杂。

GIST:https://colab.research.google.com/gist/rafiqhasan/6abe93ac454e942317005febef59a459/copy-of-dl-e2e-structured-mixed-data-tf-2-keras-estimator.ipynb

编辑: 我对其进行了修复,因此必须为每个功能生成并传递TensorSpec,并且还必须在服务函数中调用model()。

@tf.function
def serving(WERKS, DIFGRIRD, SCENARIO, TOTIRQTY, VSTATU, EKGRP, TOTGRQTY, VPATD, EKORG, NODLGR, DIFGRIRV, NODLIR, KTOKK):
    ##Feature engineering
    nodlgrbyvpatd = tf.cast(NODLGR / VPATD, tf.float32)

    payload = {
        'WERKS': WERKS,
        'DIFGRIRD': DIFGRIRD,
        'SCENARIO': SCENARIO,
        'TOTIRQTY': TOTIRQTY,
        'VSTATU': VSTATU,
        'EKGRP': EKGRP,
        'TOTGRQTY': TOTGRQTY,
        'VPATD': VPATD,
        'EKORG': EKORG,
        'NODLGR': NODLGR,
        'DIFGRIRV': DIFGRIRV,
        'NODLIR': NODLIR,
        'KTOKK': KTOKK,
        'nodlgrbyvpatd': nodlgrbyvpatd,        
    }

    ## Predict
    ##IF THERE IS AN ERROR IN NUMBER OF PARAMS PASSED HERE OR DATA TYPE THEN IT GIVES ERROR, "COULDN'T COMPUTE OUTPUT TENSOR"
    predictions = m_(payload)
    return predictions

serving = serving.get_concrete_function(WERKS=tf.TensorSpec([None,], dtype= tf.string, name='WERKS'), 
                                        DIFGRIRD=tf.TensorSpec([None,], name='DIFGRIRD'),
                                        SCENARIO=tf.TensorSpec([None,], dtype= tf.string, name='SCENARIO'), 
                                        TOTIRQTY=tf.TensorSpec([None,], name='TOTIRQTY'),
                                        VSTATU=tf.TensorSpec([None,], dtype= tf.string, name='VSTATU'), 
                                        EKGRP=tf.TensorSpec([None,], dtype= tf.string, name='EKGRP'),
                                        TOTGRQTY=tf.TensorSpec([None,], name='TOTGRQTY'), 
                                        VPATD=tf.TensorSpec([None,], name='VPATD'),
                                        EKORG=tf.TensorSpec([None,], dtype= tf.string, name='EKORG'), 
                                        NODLGR=tf.TensorSpec([None,], name='NODLGR'),
                                        DIFGRIRV=tf.TensorSpec([None,], name='DIFGRIRV'),
                                        NODLIR=tf.TensorSpec([None,], name='NODLIR'),
                                        KTOKK=tf.TensorSpec([None,], dtype= tf.string, name='KTOKK')
                                        )

version = "1"
tf.saved_model.save(
    m_,
    "./exported_model/" + version,
    signatures=serving
)

1 个答案:

答案 0 :(得分:0)

因此正确的方法就在这里,可以通过以下选项通过serving_default方法进行要素工程和预处理。我通过Tensorflow服务对其进行了进一步的测试。

@tf.function
def serving(WERKS, DIFGRIRD, SCENARIO, TOTIRQTY, VSTATU, EKGRP, TOTGRQTY, VPATD, EKORG, NODLGR, DIFGRIRV, NODLIR, KTOKK):
    ##Feature engineering
    nodlgrbyvpatd = tf.cast(NODLGR / VPATD, tf.float32)

    payload = {
        'WERKS': WERKS,
        'DIFGRIRD': DIFGRIRD,
        'SCENARIO': SCENARIO,
        'TOTIRQTY': TOTIRQTY,
        'VSTATU': VSTATU,
        'EKGRP': EKGRP,
        'TOTGRQTY': TOTGRQTY,
        'VPATD': VPATD,
        'EKORG': EKORG,
        'NODLGR': NODLGR,
        'DIFGRIRV': DIFGRIRV,
        'NODLIR': NODLIR,
        'KTOKK': KTOKK,
        'nodlgrbyvpatd': nodlgrbyvpatd,        
    }

    ## Predict
    ##IF THERE IS AN ERROR IN NUMBER OF PARAMS PASSED HERE OR DATA TYPE THEN IT GIVES ERROR, "COULDN'T COMPUTE OUTPUT TENSOR"
    predictions = m_(payload)
    return predictions

serving = serving.get_concrete_function(WERKS=tf.TensorSpec([None,], dtype= tf.string, name='WERKS'), 
                                        DIFGRIRD=tf.TensorSpec([None,], name='DIFGRIRD'),
                                        SCENARIO=tf.TensorSpec([None,], dtype= tf.string, name='SCENARIO'), 
                                        TOTIRQTY=tf.TensorSpec([None,], name='TOTIRQTY'),
                                        VSTATU=tf.TensorSpec([None,], dtype= tf.string, name='VSTATU'), 
                                        EKGRP=tf.TensorSpec([None,], dtype= tf.string, name='EKGRP'),
                                        TOTGRQTY=tf.TensorSpec([None,], name='TOTGRQTY'), 
                                        VPATD=tf.TensorSpec([None,], name='VPATD'),
                                        EKORG=tf.TensorSpec([None,], dtype= tf.string, name='EKORG'), 
                                        NODLGR=tf.TensorSpec([None,], name='NODLGR'),
                                        DIFGRIRV=tf.TensorSpec([None,], name='DIFGRIRV'),
                                        NODLIR=tf.TensorSpec([None,], name='NODLIR'),
                                        KTOKK=tf.TensorSpec([None,], dtype= tf.string, name='KTOKK')
                                        )

version = "1"
tf.saved_model.save(
    m_,
    "./exported_model/" + version,
    signatures=serving
)