我正在使用Cat and Dog Dataset
通过Tensorflow Keras
训练模型,并使用ImageDataGenerator.flow_from_directory
来读取文件。
训练和验证的准确性是不错的,但是当尝试根据测试数据进行预测时,模型将为所有图像预测相同的类别。
培训代码如下所示:
import os, shutil
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dropout, Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt
# Path to Training Directory
train_dir = 'Dogs_Vs_Cats_Small/train'
# Path to Validation Directory
validation_dir = 'Dogs_Vs_Cats_Small/validation'
#### Create the Convolutional Base
Max_Pool_Size = (2,2)
model = Sequential([
Conv2D(input_shape = (150, 150, 3), filters = 32, kernel_size = (3,3), activation = 'relu',
padding = 'valid', data_format = 'channels_last'),
MaxPooling2D(pool_size = Max_Pool_Size),
Conv2D(filters = 64, kernel_size = (3,3), activation = 'relu', padding = 'valid'),
MaxPooling2D(pool_size = Max_Pool_Size),
Conv2D(filters = 128, kernel_size = (3,3), activation = 'relu', padding = 'valid'),
MaxPooling2D(pool_size = Max_Pool_Size),
Conv2D(filters = 128, kernel_size = (3,3), activation = 'relu', padding = 'valid'),
MaxPooling2D(pool_size = Max_Pool_Size)
])
#### Define the Dense Layers on Top of Convolutional Base
model.add(Flatten())
model.add(Dense(units = 512, activation = 'relu'))
model.add(Dense(units = 1, activation = 'sigmoid'))
model.summary()
model.compile(optimizer = RMSprop(learning_rate = 0.001), loss = 'binary_crossentropy', metrics = 'acc')
Train_Gen = ImageDataGenerator(1./255)
Val_Gen = ImageDataGenerator(1./255)
Train_Generator = Train_Gen.flow_from_directory(train_dir, target_size = (150,150), batch_size = 20,
class_mode = 'binary')
Val_Generator = Val_Gen.flow_from_directory(validation_dir, target_size = (150, 150), class_mode = 'binary',
batch_size = 20)
batch_size = 20
target_size = (150,150)
No_Of_Training_Images = Train_Generator.classes.shape[0]
No_Of_Val_Images = Val_Generator.classes.shape[0]
steps_per_epoch = No_Of_Training_Images/batch_size
validation_steps = No_Of_Val_Images/batch_size
history = model.fit(x = Train_Generator, shuffle=True, epochs = 20,
steps_per_epoch = steps_per_epoch,
validation_data = Val_Generator
, validation_steps = validation_steps
)
现在,我Predict
Test Data
,如下所示:
Test_Dir = 'Dogs_Vs_Cats_Very_Small/test'
Test_Generator = ImageDataGenerator(1./255).flow_from_directory(Test_Dir,
target_size = (150,150), batch_size = 1,
shuffle = False, class_mode = 'binary') # This outputs Found 17 images belonging to 2 classes.
No_Of_Samples = len(Test_Generator.filenames)
testPredictions = model.predict(Test_Generator, steps = No_Of_Samples)
predictedClassIndices=np.argmax(testPredictions,axis=1)
print(predictedClassIndices)
filenames = Test_Generator.filenames
for f in range(len(filenames)):
print(filenames[f],":",predictedClassIndices[f])
上面的Print
语句即Predicted Classes
的输出如下所示:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
cats/cat.1546.jpg : 0
cats/cat.1547.jpg : 0
cats/cat.1548.jpg : 0
cats/cat.1549.jpg : 0
cats/cat.1550.jpg : 0
cats/cat.1566.jpg : 0
cats/cat.1593.jpg : 0
cats/cat.1594.jpg : 0
dogs/dog.1514.jpg : 0
dogs/dog.1520.jpg : 0
dogs/dog.1525.jpg : 0
dogs/dog.1551.jpg : 0
dogs/dog.1555.jpg : 0
dogs/dog.1574.jpg : 0
dogs/dog.1594.jpg : 0
dogs/dog.1597.jpg : 0
dogs/dog.1599.jpg : 0
如上所示,所有图像都被预测为Class = 0
,即Cats
。
我已经研究过此Stack Overflow Question并且我的数据是平衡的(1000张猫图像和1000张狗图像),因此,据我了解,重新平衡数据集或调整班级权重不适用。我也尝试过“增加培训时间”。
编辑:testPredictions
的内容如下所示:
[[1.0473319e-05]
[9.8473930e-01]
[2.9069009e-01]
[5.0639841e-07]
[1.8511847e-01]
[6.0166395e-01]
[4.2568660e-01]
[4.6028453e-01]
[7.8800195e-01]
[8.5675471e-02]
[8.2654454e-02]
[7.2898394e-01]
[1.5504999e-01]
[8.2106847e-01]
[8.7003058e-01]
[9.9999285e-01]
[5.1210046e-01]]
有人可以帮我改正吗?
谢谢大家。
答案 0 :(得分:2)
这里的问题是在将类分配给testPredictions
结果时的最后一步。 argmax
方法“沿轴返回最大值的索引”。在您的情况下,它始终为0
,因为在axis=1
上您只有一个元素(索引为0
)。
由于您正在执行二进制分类并且类别是平衡的,因此应用0.5概率阈值来分配类别最有意义:
predictedClassIndices = testPredictions > 0.5
for idx, filename in enumerate(filenames):
print(filename,":",predictedClassIndices[idx])