这是我的自定义损失函数:
import tensorflow.keras.backend as K
import cmath
epsylon=np.finfo(float).eps
def to_array(tensor):
return tf.make_ndarray(tensor)
def addError(test,range_min,range_max,result):
err = abs(log(range_max/max(range_min,epsylon)))
if range_min <= test <= range_max:
result.append(err)
else:
e1=abs(log(test/max(range_min,epsylon)))
e2=abs(log(test/max(range_max,epsylon)))
result.append( min(e1,e2) / max(err,epsylon) *100 + err)
def rangeLoss(yTrue,yPred):
#print(type(yPred))
a_pred=to_array(yPred)
a_true=to_array(yTrue)
result=[]
for i in range(a_true.size):
range_min=abs(a_pred[i*2])
range_max=abs(a_pred[i*2+1])
test= abs(a_true[i])
addError(test,range_min,range_max,result)
return tf.constant(result)
我进行训练时,它失败并显示
/home/ubuntu/.local/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py:591 MakeNdarray
shape = [d.size for d in tensor.tensor_shape.dim]
AttributeError: 'Tensor' object has no attribute 'tensor_shape'
当我修改to_array以使用原始张量时
def to_array(tensor):
proto_tensor = tf.make_tensor_proto(tensor)
return tf.make_ndarray(proto_tensor)
我收到以下错误:
/home/ubuntu/.local/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py:451 make_tensor_proto
_AssertCompatible(values, dtype)
/home/ubuntu/.local/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py:328 _AssertCompatible
raise TypeError("Expected any non-tensor type, got a tensor instead.")
TypeError: Expected any non-tensor type, got a tensor instead.
我尝试过的另一个选项是tensor.numpy()
,它导致了以下错误:
<ipython-input-20-0a8051a4a034>:8 to_array
return tensor.numpy()
AttributeError: 'Tensor' object has no attribute 'numpy'
当然还有tensor.eval(session=tf.compat.v1.Session())
,它也失败了
我该怎么做?
答案 0 :(得分:0)
我已经通过切片原始张量解决了这个问题。这是代码:
<h1 id="age" data-age="27">27</h1>