在模型完成训练并尝试保存时,torch.save(model.state_dict())行出现错误。

时间:2020-06-04 14:54:47

标签: python nlp pytorch lstm spyder

我正在处理有关nlp的一些代码。我想训练并保存模型,但是会出现此错误。我搜索了一些文档,但没有找到正确的解决方案。我该如何解决这个问题?

Error message

import torch,time
import torch.nn as nn

input_dim = 5
hidden_dim = 10
n_layers = 1

lstm_layer = nn.LSTM(input_dim, hidden_dim, n_layers, batch_first=True)

batch_size = 1
seq_len = 1

inp = torch.randn(batch_size, seq_len, input_dim)
hidden_state = torch.randn(n_layers, batch_size, hidden_dim)
cell_state = torch.randn(n_layers, batch_size, hidden_dim)
hidden = (hidden_state, cell_state)

out, hidden = lstm_layer(inp, hidden)
print("Output shape: ", out.shape)
print("Hidden: ", hidden)

seq_len = 3
inp = torch.randn(batch_size, seq_len, input_dim)
out, hidden = lstm_layer(inp, hidden)
print(out.shape)

# Obtaining the last output
out = out.squeeze()[-1, :]
print(out.shape)

import bz2
from collections import Counter
import re
import nltk
import numpy as np
#nltk.download('punkt')

train_file = bz2.BZ2File('C:/Users/DELL/Dogal-Dil-Isleme/Xml-Files/trwiktionary-20200301-pages-articles-multistream.xml.bz2')
test_file = bz2.BZ2File('C:/Users/DELL/Dogal-Dil-Isleme/Xml-Files/trwikisource-20200601-pages-articles.xml.bz2')


train_file = train_file.readlines()
test_file = test_file.readlines()

num_train = 200  
num_test = 50  

train_file = [x.decode('utf-8') for x in train_file[:num_train]]
test_file = [x.decode('utf-8') for x in test_file[:num_test]]

train_labels = [0 if x.split(' ')[0] == '__label__1' else 1 for x in train_file]
train_sentences = [x.split(' ', 1)[1][:-1].lower() for x in train_file]

test_labels = [0 if x.split(' ')[0] == '__label__1' else 1 for x in test_file]
test_sentences = [x.split(' ', 1)[1][:-1].lower() for x in test_file]

for i in range(len(train_sentences)):
    train_sentences[i] = re.sub('\d','0',train_sentences[i])

for i in range(len(test_sentences)):
    test_sentences[i] = re.sub('\d','0',test_sentences[i])

for i in range(len(train_sentences)):
    if 'www.' in train_sentences[i] or 'http:' in train_sentences[i] or 'https:' in train_sentences[i] or '.com' in train_sentences[i]:
        train_sentences[i] = re.sub(r"([^ ]+(?<=\.[a-z]{3}))", "<url>", train_sentences[i])

for i in range(len(test_sentences)):
    if 'www.' in test_sentences[i] or 'http:' in test_sentences[i] or 'https:' in test_sentences[i] or '.com' in test_sentences[i]:
        test_sentences[i] = re.sub(r"([^ ]+(?<=\.[a-z]{3}))", "<url>", test_sentences[i])


words = Counter()  # Dictionary that will map a word to the number of times it appeared in all the training sentences
for i, sentence in enumerate(train_sentences):
    train_sentences[i] = []
    for word in nltk.word_tokenize(sentence):  
        words.update([word.lower()])  
        train_sentences[i].append(word)
    if i%20000 == 0:
        print(str((i*100)/num_train) + "% done")
print("100% done")

words = {k:v for k,v in words.items() if v>1}
words = sorted(words, key=words.get, reverse=True)
words = ['_PAD','_UNK'] + words
word2idx = {o:i for i,o in enumerate(words)}
idx2word = {i:o for i,o in enumerate(words)}

for i, sentence in enumerate(train_sentences):
    train_sentences[i] = [word2idx[word] if word in word2idx else 0 for word in sentence]

for i, sentence in enumerate(test_sentences):
    # For test sentences, we have to tokenize the sentences as well
    test_sentences[i] = [word2idx[word.lower()] if word.lower() in word2idx else 0 for word in nltk.word_tokenize(sentence)]

def pad_input(sentences, seq_len):
    features = np.zeros((len(sentences), seq_len),dtype=int)
    for ii, review in enumerate(sentences):
        if len(review) != 0:
            features[ii, -len(review):] = np.array(review)[:seq_len]
    return features

seq_len = 200  # The length that the sentences will be padded/shortened to

train_sentences = pad_input(train_sentences, seq_len)
test_sentences = pad_input(test_sentences, seq_len)

train_labels = np.array(train_labels)
test_labels = np.array(test_labels)

split_frac = 0.5 # 50% validation, 50% test
split_id = int(split_frac * len(test_sentences))
val_sentences, test_sentences = test_sentences[:split_id], test_sentences[split_id:]
val_labels, test_labels = test_labels[:split_id], test_labels[split_id:] 


import torch
from torch.utils.data import TensorDataset, DataLoader
import torch.nn as nn

train_data = TensorDataset(torch.from_numpy(train_sentences), torch.from_numpy(train_labels))
val_data = TensorDataset(torch.from_numpy(val_sentences), torch.from_numpy(val_labels))
test_data = TensorDataset(torch.from_numpy(test_sentences), torch.from_numpy(test_labels))

batch_size = 200

train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
val_loader = DataLoader(val_data, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)

# torch.cuda.is_available() checks and returns a Boolean True if a GPU is available, else it'll return False
is_cuda = torch.cuda.is_available()

# If we have a GPU available, we'll set our device to GPU. We'll use this device variable later in our code.
if is_cuda:
    device = torch.device("cuda")
else:
    device = torch.device("cpu")



class SentimentNet(nn.Module):
    def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, drop_prob=0.5):
        super(SentimentNet, self).__init__()
        self.output_size = output_size
        self.n_layers = n_layers
        self.hidden_dim = hidden_dim

        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=drop_prob, batch_first=True)
        self.dropout = nn.Dropout(drop_prob)
        self.fc = nn.Linear(hidden_dim, output_size)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x, hidden):
        batch_size = x.size(0)
        x = x.long()
        embeds = self.embedding(x)
        lstm_out, hidden = self.lstm(embeds, hidden)
        lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim)

        out = self.dropout(lstm_out)
        out = self.fc(out)
        out = self.sigmoid(out)

        out = out.view(batch_size, -1)
        out = out[:,-1]
        return out, hidden

    def init_hidden(self, batch_size):
        weight = next(self.parameters()).data
        hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device),
                      weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device))
        return hidden

vocab_size = len(word2idx) + 1
output_size = 1
embedding_dim = 400
hidden_dim = 512
n_layers = 2

model = SentimentNet(vocab_size, output_size, embedding_dim, hidden_dim, n_layers)
model.to(device)

lr=0.005
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)


epochs = 2
counter = 0
print_every = 1000
clip = 5
valid_loss_min = np.Inf

model.train()
for i in range(epochs):
    h = model.init_hidden(batch_size)

    for inputs, labels in train_loader:
        counter += 1
        h = tuple([e.data for e in h])
        inputs, labels = inputs.to(device), labels.to(device)
        model.zero_grad()
        output, h = model(inputs, h)
        loss = criterion(output.squeeze(), labels.float())
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), clip)
        optimizer.step()

        if counter%print_every == 0:
            val_h = model.init_hidden(batch_size)
            val_losses = []
            model.eval()
            for inp, lab in val_loader:
                val_h = tuple([each.data for each in val_h])
                inp, lab = inp.to(device), lab.to(device)
                out, val_h = model(inp, val_h)
                val_loss = criterion(out.squeeze(), lab.float())
                val_losses.append(val_loss.item())

            model.train()
            print("Epoch: {}/{}...".format(i+1, epochs),
                  "Step: {}...".format(counter),
                  "Loss: {:.6f}...".format(loss.item()),
                  "Val Loss: {:.6f}".format(np.mean(val_losses)))
            if np.mean(val_losses) <= valid_loss_min:
                torch.save(model.state_dict(), 'C:/Users/DELL/Dogal-Dil-Isleme/Models/state_dict.pt')
                print('Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...'.format(valid_loss_min,np.mean(val_losses)))
                valid_loss_min = np.mean(val_losses)

time.sleep(1)                
# Loading the best model
model.load_state_dict(torch.load('C:/Users/DELL/Dogal-Dil-Isleme/Models/state_dict.pt'))

test_losses = []
num_correct = 0
h = model.init_hidden(batch_size)

model.eval()
for inputs, labels in test_loader:
    h = tuple([each.data for each in h])
    inputs, labels = inputs.to(device), labels.to(device)
    output, h = model(inputs, h)
    test_loss = criterion(output.squeeze(), labels.float())
    test_losses.append(test_loss.item())
    pred = torch.round(output.squeeze())  # Rounds the output to 0/1
    correct_tensor = pred.eq(labels.float().view_as(pred))
    correct = np.squeeze(correct_tensor.cpu().numpy())
    num_correct += np.sum(correct)

print("Test loss: {:.3f}".format(np.mean(test_losses)))
test_acc = num_correct/len(test_loader.dataset)
print("Test accuracy: {:.3f}%".format(test_acc*100))

我尝试创建一个新文件夹并更改路径,但是所有方法都会出错:) 我阅读了pytorch文档并更改了建议的代码,但仍然出现错误。 我将分享一些链接供您阅读有关此问题的信息。

same issue pytorch documentation

我该如何解决?还是有其他方法可以保存模型?

1 个答案:

答案 0 :(得分:0)

尝试将其更改为:model.load_state_dict(torch.load('C:/ Users / DELL / Dogal-Dil-Isleme / Models / state_dict'))