我对聚类结果的评估有问题。
我有3个列表:
# 10 objects in my corpus
TOT = [1,2,3,4,5,6,7,8,9,10]
# .... clustering into k=5 clusters
# For each automatic cluster:
# Objects with ID 2 and 8 are stored into this
predicted = [2,8]
# For each cluster in the ground truth:
true = [2,4,9]
# computes TP, FP, TN, FN
A = set(docs_in_cluster)
B = set(constraints)
TP = list(A & B)
FP = list(A - (A & B))
TN = list((TOT - A) & (TOT - B))
FN = list(B - A)
我的问题是:是否可以为每个群集计算TP,FP,TN,FN?有道理吗?
编辑:可复制的代码
短篇小说:
我正在做NLP,我已经用Gensim的Word2Vec处理了9k文档的语料库,提取了向量,并为每个文档计算了一个“文档向量”。之后,我计算出文档向量之间的余弦相似度,得到一个9k x 9k的矩阵。
最后,使用此矩阵,我运行了KMeans和层次聚类。
让我们考虑一下具有14个类的HAC的输出:
id label
0 1
1 8
....
9k 12
现在的问题是:如何评估群集的质量?
我的教授已阅读了9个文档中的100个,并创建了一些“集群”的说法:“好的文档讨论了label1
”或“好的其他讨论了label2
和label3
请注意,我的教授提供的标签与聚类过程完全无关,只是该主题的摘要,但是数量相同(在此示例中为14)。
代码
我有两个数据框,上面一个来自HAC群集,另一个来自我的教授的100个文档,看起来像: (以前面的示例为例)
GT
id label1 label2 label3 .... label14
5 1 0 0 0
34 0 1 1 0
...........................
最后,我的代码执行此操作:
# since I have labels only for 100 of my 9k documents
indexes = list(map(int, ground_truth['id'].values.tolist()))
reduced_df = clusters.loc[clusters['id'].isin(indexes), :]
# now reduced_df contains only the documents that have been read by my prof
TOT = set(reduced_df['id'].values.tolist())
for each cluster from HAC
doc_in_this_cluster = [ .... ]
for each cluster from GT
doc_in_this_label = [ ... ]
A = set(doc_in_this_cluster )
B = set(doc_in_this_label )
TP = list(A & B)
FP = list(A - (A & B))
TN = list((TOT - A) & (TOT - B))
FN = list(B - A)
和代码:
indexes = list(map(int, self.ground_truth['id'].values.tolist()))
# reduce clusters_file matching only manually analyzed documents: --------> TOT
reduced_df = self.clusters.loc[self.clusters['id'].isin(indexes), :]
TOT = set(reduced_df['id'].values.tolist())
clusters_groups = reduced_df.groupby('label')
for label, df_group in clusters_groups:
docs_in_cluster = df_group['id'].values.tolist()
row = []
for col in self.ground_truth.columns[1:]:
constraints = list(
map(int, self.ground_truth.loc[self.ground_truth[col] == 1, 'id'].values.tolist())
)
A = set(docs_in_cluster)
B = set(constraints)
TP = list(A & B)
FP = list(A - (A & B))
TN = list((TOT - A) & (TOT - B))
FN = list(B - A)
print(f"HAC Cluster: {label} - GT Label: {col}")
print(TP, FP, TN, FN)
答案 0 :(得分:0)
我假设您正在尝试实现设置操作。您可以尝试以下功能来解决您的情况:
def setSubtract(A,B):
C=[]
for i in A:
if i in B:
pass
else:
C.append(i)
return C
def setIntersection(A,B):
C=[]
for i in A:
if i in B:
C.append(i)
return C
TOT = [1,2,3,4,5,6,7,8,9,10]
A=[1,2,3,4]
B=[2,3]
print("A&B",setIntersection(A,B))
print("TOT-B",setSubtract(TOT,B))
输出:
A&B [2, 3]
TOT-B [1, 4, 5, 6, 7, 8, 9, 10]