云功能在本地运行,但在GCP中崩溃(功能执行耗时12681 ms,状态为“崩溃”)

时间:2020-05-29 22:24:35

标签: python google-cloud-platform google-cloud-functions google-cloud-sql google-cloud-logging

这是我的代码的超级缩写版本(我将在注释中添加指向所有内容的链接)

import ...

...

def main(data, context):
    log_client = logging.Client()

    log_name = 'cloudfunctions.googleapis.com%2Fcloud-functions'

    res = Resource(type="cloud_function",
                   labels={
                       "function_name": "refresh_classes",
                       "region": os.environ.get("FUNC_REGION")
                   })
    logger = log_client.logger(log_name.format(os.environ.get("PROJECT_ID")))

    db = sqlalchemy.create_engine(
        sqlalchemy.engine.url.URL(
            drivername="mysql+pymysql",
            username=os.environ.get("DB_USER"),
            password=os.environ.get("DB_PASS"),
            host=os.environ.get("DB_HOST"),
            port=3306,
            database=PRIMARY_TABLE_NAME
        ),
        pool_size=5,
        max_overflow=2,
        pool_timeout=30,
        pool_recycle=1800
    )
    start_time = perf_counter()

    check_if_table_exists(db)

    for i in range(START_IDX, END_IDX):
        print(i)
        logger.log_text(f"Checking class with id {i}", resource=res, severity="INFO")

        ...

    logger.log_text(f"Total seconds elapsed: {perf_counter() - start_time}", resource=res, severity="INFO")


if __name__ == '__main__':
    main('data', 'context')

当我在本地配置上述GOOGLE_APPLICATION_CREDENTIALS并运行本地Cloud MySQL代理的情况下运行上述云功能时,将进行详细的云日志记录,并且该功能将顺利完成,完全符合我的期望:

enter image description here

但是,当我将整个组件部署到GCP并尝试通过控制台(云消息传递触发器)触发它时,我得到的只是日志记录:

enter image description here

实际文本

{
 insertId: "******"  
 labels: {
  execution_id: "******"   
 }
 logName: "projects/******/logs/cloudfunctions.googleapis.com%2Fcloud-functions"  
 receiveTimestamp: "2020-05-29T22:11:13.435688367Z"  
 resource: {
  labels: {
   function_name: "******"    
   project_id: "******"    
   region: "us-central1"    
  }
  type: "cloud_function"   
 }
 severity: "DEBUG"  
 textPayload: "Function execution started"  
 timestamp: "2020-05-29T22:11:03.069889708Z"  
 trace: "projects/******/traces/******"  
}

{
 insertId: "******"  
 labels: {
  execution_id: "******"   
 }
 logName: "projects/******/logs/cloudfunctions.googleapis.com%2Fcloud-functions"  
 receiveTimestamp: "2020-05-29T22:11:16.331311285Z"  
 resource: {
  labels: {
   function_name: "******"    
   project_id: "******"    
   region: "us-central1"    
  }
  type: "cloud_function"   
 }
 severity: "DEBUG"  
 textPayload: "Function execution took 12362 ms, finished with status: 'crash'"  
 timestamp: "2020-05-29T22:11:15.430033249Z"  
 trace: "projects/******/traces/******"  
}

*我真的不知道什么是敏感信息,什么不是,所以我只是给一些随机的东西加注了

在撰写本文时,我意识到更多的日志记录可能会有所帮助,因此我将Google记录器插入了记录器设置,数据库设置和我运行的表检查之间。

该功能在安装Google记录器之前就崩溃了。

因此,在这一点上,我现在还不确定是什么破坏了我的功能,而且我也不知道如何查找,因为Google Cloud日志记录没有帮助。错误json具有trace属性,这看起来确实很有希望,因为此时我需要的只是Python堆栈跟踪,但我不知道是否有办法看到它。

我应该注意,我通过GCP的Cloud Function控制台配置了环境变量。

enter image description here

原则上,有两件事会有所帮助:

  1. 如何查看崩溃的云函数的python堆栈跟踪
  2. 特定于我的应用程序的原因可能导致它表现出这种崩溃行为

1 个答案:

答案 0 :(得分:1)

所以我最终弄清楚了,如果您不是通过Cloud Scheduler触发您的云功能,而是通过Test Function手动运行该功能

enter image description here

GCP将给您引发异常。就我而言,我的Cloud MySQL连接失败

Error: function terminated. Recommended action: inspect logs for termination reason. Details:
(pymysql.err.OperationalError) (2003, "Can't connect to MySQL server on '**.***.**.***' (timed out)")
(Background on this error at: http://sqlalche.me/e/e3q8)

所以我只需要引入一个环境变量即可在通过代理和unix sockets进行连接之间进行切换,例如:

if os.environ.get("ENV") == "local":
    db = sqlalchemy.create_engine(
        sqlalchemy.engine.url.URL(
            drivername="mysql+pymysql",
            username=os.environ.get("DB_USER"),
            password=os.environ.get("DB_PASS"),
            host=os.environ.get("DB_HOST"),
            port=3306,
            database=PRIMARY_TABLE_NAME
        ),
        pool_size=5,
        max_overflow=2,
        pool_timeout=30,
        pool_recycle=1800
    )
else:
    db = sqlalchemy.create_engine(
        sqlalchemy.engine.url.URL(
            drivername="mysql+pymysql",
            username=os.environ.get("DB_USER"),
            password=os.environ.get("DB_PASS"),
            database=PRIMARY_TABLE_NAME,
            query={"unix_socket": "/cloudsql/{}".format(os.environ.get("CLOUD_SQL_CONNECTION_NAME"))}
        ),
        pool_size=5,
        max_overflow=2,
        pool_timeout=30,
        pool_recycle=1800
    )