我想使训练数据使用整个数据集。
我使用了“青光眼”数据集。
所以我得到了一个结果,但是我不知道这是正确的结果。
我想使训练数据使用整个数据集。
我使用了“青光眼”数据集。
所以我得到了一个结果,但是我不知道这是正确的结果。
代码:
trainData <- GlaucomaM
Gla_ctree <- ctree(ag~.,data=trainData)
print(Gla_ctree)
结果:
Conditional inference tree with 15 terminal nodes
Response: ag
Inputs: at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv, Class
Number of observations: 196
1) mr <= 0.931; criterion = 1, statistic = 193.486
2) mr <= 0.834; criterion = 1, statistic = 121.702
3) mr <= 0.771; criterion = 1, statistic = 56.913
4) mr <= 0.718; criterion = 1, statistic = 20.969
5)* weights = 7
4) mr > 0.718
6)* weights = 15
3) mr > 0.771
7) mr <= 0.803; criterion = 1, statistic = 34.932
8)* weights = 11
7) mr > 0.803
9) mr <= 0.822; criterion = 1, statistic = 23.776
10)* weights = 13
9) mr > 0.822
11)* weights = 12
2) mr > 0.834
12) mr <= 0.886; criterion = 1, statistic = 63.946
13) mr <= 0.858; criterion = 1, statistic = 34.946
14)* weights = 14
13) mr > 0.858
15) mr <= 0.876; criterion = 1, statistic = 20.884
16)* weights = 15
15) mr > 0.876
17)* weights = 7
12) mr > 0.886
18) mr <= 0.914; criterion = 1, statistic = 27.891
19)* weights = 18
18) mr > 0.914
20)* weights = 11
1) mr > 0.931
21) mr <= 1.075; criterion = 1, statistic = 71.795
22) mr <= 0.994; criterion = 1, statistic = 60.972
23) mr <= 0.96; criterion = 1, statistic = 30.968
24)* weights = 18
23) mr > 0.96
25)* weights = 14
22) mr > 0.994
26) mr <= 1.032; criterion = 1, statistic = 28.961
27)* weights = 15
26) mr > 1.032
28)* weights = 15
21) mr > 1.075
29)* weights = 11