如何使用整个数据集进行R训练?

时间:2020-05-27 10:31:27

标签: r

我想使训练数据使用整个数据集。

我使用了“青光眼”数据集。

所以我得到了一个结果,但是我不知道这是正确的结果。

我想使训练数据使用整个数据集。

我使用了“青光眼”数据集。

所以我得到了一个结果,但是我不知道这是正确的结果。

代码:

trainData <- GlaucomaM
Gla_ctree <- ctree(ag~.,data=trainData)
print(Gla_ctree)

结果:

Conditional inference tree with 15 terminal nodes

Response:  ag 
Inputs:  at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv, Class 
Number of observations:  196 

1) mr <= 0.931; criterion = 1, statistic = 193.486
  2) mr <= 0.834; criterion = 1, statistic = 121.702
    3) mr <= 0.771; criterion = 1, statistic = 56.913
      4) mr <= 0.718; criterion = 1, statistic = 20.969
        5)*  weights = 7 
      4) mr > 0.718
        6)*  weights = 15 
    3) mr > 0.771
      7) mr <= 0.803; criterion = 1, statistic = 34.932
        8)*  weights = 11 
      7) mr > 0.803
        9) mr <= 0.822; criterion = 1, statistic = 23.776
          10)*  weights = 13 
        9) mr > 0.822
          11)*  weights = 12 
  2) mr > 0.834
    12) mr <= 0.886; criterion = 1, statistic = 63.946
      13) mr <= 0.858; criterion = 1, statistic = 34.946
        14)*  weights = 14 
      13) mr > 0.858
        15) mr <= 0.876; criterion = 1, statistic = 20.884
          16)*  weights = 15 
        15) mr > 0.876
          17)*  weights = 7 
    12) mr > 0.886
      18) mr <= 0.914; criterion = 1, statistic = 27.891
        19)*  weights = 18 
      18) mr > 0.914
        20)*  weights = 11 
1) mr > 0.931
  21) mr <= 1.075; criterion = 1, statistic = 71.795
    22) mr <= 0.994; criterion = 1, statistic = 60.972
      23) mr <= 0.96; criterion = 1, statistic = 30.968
        24)*  weights = 18 
      23) mr > 0.96
        25)*  weights = 14 
    22) mr > 0.994
      26) mr <= 1.032; criterion = 1, statistic = 28.961
        27)*  weights = 15 
      26) mr > 1.032
        28)*  weights = 15 
  21) mr > 1.075
    29)*  weights = 11 

0 个答案:

没有答案