我正在尝试在装有Ubuntu(18.04)的笔记本电脑上执行机器学习项目,这需要GPU。我的笔记本电脑具有NVIDIA Geforce MX-150(2GB)GPU,并且已安装以下组件。
Kernel : 5.3.0-53-generic
GCC : 7.5.0
Nvidia Driver Version : 440.33
CUDA Version : 10.0
cuDNN Version : 7.4.1.5-1+cuda10.0
Python : 3.6.3
tensorflow : 1.14.0
tensorflow-gpu : 1.14.0
下面是nvidia-smi命令的输出
nvidia-smi
+-----------------------------------------------------------------------------+
Sat May 23 03:36:54 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce MX150 On | 00000000:01:00.0 Off | N/A |
| N/A 57C P0 N/A / N/A | 320MiB / 2002MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
|Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1054 G /usr/lib/xorg/Xorg 20MiB |
| 0 1204 G /usr/bin/gnome-shell 46MiB |
| 0 1509 G /usr/lib/xorg/Xorg 89MiB |
| 0 1680 G /usr/bin/gnome-shell 76MiB |
| 0 2078 G ...AAAAAAAAAAAACAAAAAAAAAA= --shared-files 84MiB |
+-----------------------------------------------------------------------------+
在检查GPU可用性时,我从python得到以下消息:
import tensorflow as tf
tf.test.is_gpu_available()
2020-05-23 03:22:00.113303: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU
supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2020-05-23 03:22:00.139002: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94]
CPU Frequency: 1800000000 Hz
2020-05-23 03:22:00.139733: I tensorflow/compiler/xla/service/service.cc:168] XLA service
0x55bf899c6a30 executing computations on platform Host. Devices:
2020-05-23 03:22:00.139791: I tensorflow/compiler/xla/service/service.cc:175]
StreamExecutor device (0): Host, Default Version
False
我的图形卡支持CUDA,可以通过下面的链接进行验证:
https://www.geforce.com/hardware/notebook-gpus/geforce-mx150/specifications/
在仔细检查了所有相关软件的兼容性之后,我完成了所有这些安装,但是现在我仍然无法成功使用我的GPU。谁能告诉我我的GPU或处理器出了什么问题,为什么不能识别GPU?
答案 0 :(得分:-1)
Linux或Ubuntu开发人员本质上无法检查封闭代码(专有)驱动器。 我的建议,请注意不要使用封闭源视频卡,并尝试使下载完成