我正在尝试创建一个可处理图像的keras NN 当我尝试拟合模型时,出现此错误 检查模型输入时出错:传递给模型的Numpy数组列表不是模型预期的大小。预计会看到1个数组,但获得了以下10个数组的列表:[array([[[[[69,71,73,...,63,70,70],
那是为什么?
train_size = 10
test_size = 100
validation_size = 50
height = 50
width = 50
class ImageOperation:
@staticmethod
def grayImg(image_obj: np.ndarray):
return cv2.cvtColor(image_obj, cv2.COLOR_BGR2GRAY)
@staticmethod
def colorImg(path: str):
return cv2.imread(path)
@staticmethod
def resizeImage(img: np.ndarray, height: int, width: int):
return cv2.resize(img, (height, width))
# load images
train_path = r"D:/Study/200-200/train/train"
train_images = [ImageOperation.resizeImage(ImageOperation.colorImg(train_path + str(i) + ".jpg"),height,width) for i in range(train_size)]
y_train_red = [np.array(img[:, :, 2]/255).flatten() for img in train_images]
train_images = [np.expand_dims(ImageOperation.grayImg(item), axis=0) for item in train_images]
model1 = Sequential()
model1.add(Conv2D(64, (3,3), activation='relu', padding='same', strides=2,input_shape=(1,50,50)))
model1.add(Conv2D(128, (3,3), activation='relu', padding='same', strides=2))
model1.add(UpSampling2D((2, 2)))
model1.add(Flatten())
model1.add(Dense(height*width, activation='tanh'))
model1.compile(optimizer='adam', loss='mse')
clean_images = model1.fit(train_images,y_train_red, epochs=10)
答案 0 :(得分:0)
只需将您的y_train_red
和train_images
转换为np.ndarray:
y_train_red = [np.array(img[:, :, 2]/255).flatten() for img in train_images]
y_train_red = np.array(y_train_red)
train_images = [np.expand_dims(ImageOperation.grayImg(item), axis=0) for item in train_images]
train_images = np.array(train_images)