我使用以下代码读取了表格:
<div class="container">
<div class="content">
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdasd
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdasd
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdasd
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasda
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdasd
sdfdsfsdfsdfdsfsdsdfdsfs
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdasd
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdas
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdasd
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdasd
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdas
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdas
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdas
sdfdsfsdfsdfdsfsdsdfdsfsdfsdfasdfsdfasdasdasdas
</div>
</div>
某些列的条目较少。当我尝试计算重叠和相交时,会出现问题,我将空白值作为公用值。那么如何在不删除整个列或行的情况下排除这些空白值呢?
我正在使用Data<- read.table("1mo.txt", header = TRUE, sep = "\t", stringsAsFactors = F)
制作维恩图
RVenn
以下是数据:
Dat<-c(Data)
Test = Venn(Dat)
overlap(Test)
overlap(Test, c(1,2,3,4,6,7))
setmap(Test)
答案 0 :(得分:2)
很难从上面的例子中看出来,尝试这样的事情,我写一些类似于您的数据的事情:
x = structure(list(W = c("rno-miR-340-3p", "rno-miR-340-3p", "rno-miR-133a-3p"
), Ni = c("rno-miR-133a-3p", "rno-miR-133a-3p", "rno-miR-500-3p"
), Co = c("rno-miR-500-3p", "rno-miR-500-3p", "rno-miR-196b-5p"
), Fe = c("rno-miR-196b-5p", "rno-miR-196b-5p", ""), Cu = c("rno-miR-133a-3p",
"rno-miR-133a-3p", ""), Al = c("rno-let-7c-2-3p", "", "")), class = "data.frame", row.names = c(NA,
-3L))
write.table(x,"test.txt",quote=FALSE,sep="\t",row.names=FALSE)
我阅读了其中的内容,类似于您拥有的内容
Data = read.table("test.txt",sep="\t",header=TRUE)
Data
W Ni Co Fe
1 rno-miR-340-3p rno-miR-133a-3p rno-miR-500-3p rno-miR-196b-5p
2 rno-miR-340-3p rno-miR-133a-3p rno-miR-500-3p rno-miR-196b-5p
3 rno-miR-133a-3p rno-miR-500-3p rno-miR-196b-5p
Cu Al
1 rno-miR-133a-3p rno-let-7c-2-3p
2 rno-miR-133a-3p
3
一种方法是将空白填充为NA:
Data = read.table("test.txt",sep="\t",header=TRUE,fill=TRUE,na.strings="",stringsAsFactors=FALSE)
Data
W Ni Co Fe
1 rno-miR-340-3p rno-miR-133a-3p rno-miR-500-3p rno-miR-196b-5p
2 rno-miR-340-3p rno-miR-133a-3p rno-miR-500-3p rno-miR-196b-5p
3 rno-miR-133a-3p rno-miR-500-3p rno-miR-196b-5p <NA>
Cu Al
1 rno-miR-133a-3p rno-let-7c-2-3p
2 rno-miR-133a-3p <NA>
3 <NA> <NA>
然后,如果要绘制超级维恩图,则要遍历各列,并省略NA:
library(RVenn)
ggvenn(Venn(sapply(Data,na.omit)[1:3]))