我是R的新手,正在尝试完成以下任务efficiently
。
我有data.frame
,x
,其中包含以下列:start
,end
,val1
,val2
,val3
,val4
。列由start
排序/排序。
对于每个start
,首先我必须找到x
中共享相同start
的所有条目。由于列表是有序的,因此它们将是连续的。如果特定start
只出现一次,那么我忽略它。然后,对于具有相同start
的这些条目,假设某个特定start
,则有3个条目,如下所示:
start=10
start end val1 val2 val3 val4 10 25 8 9 0 0 10 55 15 200 4 9 10 30 4 8 0 1
然后,我必须一次取两行,并在fisher.test
2x4
矩阵上执行val1:4
。也就是说,
row1:row2 => fisher.test(matrix(c(8,15,9,200,0,4,0,9), nrow=2)) row1:row3 => fisher.test(matrix(c(8,4,9,8,0,0,0,1), nrow=2)) row2:row3 => fisher.test(matrix(c(15,4,200,8,4,0,9,1), nrow=2))
我写的代码是传统上使用for-loops
完成的。我想知道这是否可以矢量化或者无论如何都要改进。
f_start = as.factor(x$start) #convert start to factor to get count tab_f_start = as.table(f_start) # convert to table to access count o_start1 = NULL o_end1 = NULL o_start2 = NULL o_end2 = NULL p_val = NULL for (i in 1:length(tab_f_start)) { # check if there are more than 1 entries with same start if ( tab_f_start[i] > 1) { # get all rows for current start cur_entry = x[x$start == as.integer(names(tab_f_start[i])),] # loop over all combinations to obtain p-values ctr = tab_f_start[i] for (j in 1:(ctr-1)) { for (k in (j+1):ctr) { # store start and end values separately o_start1 = c(o_start1, x$start[j]) o_end1 = c(o_end1, x$end[j]) o_start2 = c(o_start2, x$start[k]) o_end2 = c(o_end2, x$end[k]) # construct matrix m1 = c(x$val1[j], x$val1[k]) m2 = c(x$val2[j], x$val2[k]) m3 = c(x$val3[j], x$val3[k]) m4 = c(x$val4[j], x$val4[k]) m = matrix(c(m1,m2,m3,m4), nrow=2) p_val = c(p_val, fisher.test(m)) } } } } result=data.frame(o_start1, o_end1, o_start2, o_end2, p_val)
谢谢!
答案 0 :(得分:6)
正如@Ben Bolker建议的那样,您可以使用plyr
包来紧凑地执行此操作。第一步是创造
包含所需行对的更宽数据帧。使用combn
函数生成行对:
set.seed(1)
x <- data.frame( start = c(1,2,2,2,3,3,3,3),
end = 1:8,
v1 = sample(8), v2 = sample(8), v3 = sample(8), v4 = sample(8))
require(plyr)
z <- ddply(x, .(start), function(d) if (nrow(d) == 1) NULL
else {
row_pairs <- combn(nrow(d),2)
cbind( a = d[ row_pairs[1,], ],
b = d[ row_pairs[2,], ] )
})[, -1]
第二步是提取p.value
将fisher.test
应用于每个行对:
result <- ddply(z, .(a.start, a.end, b.start, b.end),
function(d)
fisher.test(matrix(unlist( d[, -c(1,2,7,8) ]),
nrow=2, byrow=TRUE))$p.value )
> result
a.start a.end b.start b.end V1
1 2 2 2 3 0.33320784
2 2 2 2 4 0.03346192
3 2 3 2 4 0.84192284
4 3 5 3 6 0.05175017
5 3 5 3 7 0.65218289
6 3 5 3 8 0.75374989
7 3 6 3 7 0.34747011
8 3 6 3 8 0.10233072
9 3 7 3 8 0.52343422