我想移动多索引数据框中的列,以计算具有滞后自变量的回归模型。由于我的时间序列缺少值,因此我只想将已知日期的值转移。 df看起来像这样:
cost
ID day
1 31.01.2020 0
1 03.02.2020 0
1 04.02.2020 0.12
1 05.02.2020 0
1 06.02.2020 0
1 07.02.2020 0.08
1 10.02.2020 0
1 11.02.2020 0
1 12.02.2020 0.03
1 13.02.2020 0.1
1 14.02.2020 0
所需的输出如下:
cost cost_lag
ID day
1 31.01.2020 0 NaN
1 03.02.2020 0 NaN
1 04.02.2020 0.12 0
1 05.02.2020 0 0.12
1 06.02.2020 0 0
1 07.02.2020 0.08 0
1 10.02.2020 0 NaN
1 11.02.2020 0 0
1 12.02.2020 0.03 0
1 13.02.2020 0.1 0.03
1 14.02.2020 0 0.1
基于this answer to a similar question,我尝试了以下操作:
df['cost_lag'] = df.groupby(['id'])['cost'].shift(1)[df.reset_index().day == df.reset_index().day.shift(1) + datetime.timedelta(days=1)]
但这会导致我不理解的错误消息:
IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match
我还尝试按照建议的here方法来填写缺少的日期:
ams_spend_ranking_df = ams_spend_ranking_df.index.get_level_values(1).apply(lambda x: datetime.datetime(x, 1, 1))
再次导致错误消息无法启迪我:
AttributeError: 'DatetimeIndex' object has no attribute 'apply'
长话短说:如果前一天没有数据,如何将费用列移动1天并添加NaN?
答案 0 :(得分:2)
您可以在DataFrameGroupBy.resample
和Resampler.asfreq
之间添加所有缺少的日期时间:
df1 = df.reset_index(level=0).groupby(['ID'])['cost'].resample('d').asfreq()
print (df1)
ID day
1 2020-01-31 0.00
2020-02-01 NaN
2020-02-02 NaN
2020-02-03 0.00
2020-02-04 0.12
2020-02-05 0.00
2020-02-06 0.00
2020-02-07 0.08
2020-02-08 NaN
2020-02-09 NaN
2020-02-10 0.00
2020-02-11 0.00
2020-02-12 0.03
2020-02-13 0.10
2020-02-14 0.00
Name: cost, dtype: float64
因此,如果将您的解决方案与DataFrameGroupBy.shift
一起使用,它会像需要的那样工作:
df['cost_lag'] = df1.groupby('ID').shift(1)
print (df)
cost cost_lag
ID day
1 2020-01-31 0.00 NaN
2020-02-03 0.00 NaN
2020-02-04 0.12 0.00
2020-02-05 0.00 0.12
2020-02-06 0.00 0.00
2020-02-07 0.08 0.00
2020-02-10 0.00 NaN
2020-02-11 0.00 0.00
2020-02-12 0.03 0.00
2020-02-13 0.10 0.03
2020-02-14 0.00 0.10