在熊猫中使用分组的.agg计算加权平均值

时间:2020-05-15 20:32:51

标签: python-3.x pandas pandas-groupby

我想使用 pandas 中的.agg()函数按组计算数据集中的一列的平均值和另一列的加权平均值。我知道一些解决方案,但是它们不是很简洁。

一个解决方案已发布在此处(pandas and groupby: how to calculate weighted averages within an agg,但它似乎仍然不太灵活,因为权重列在lambda函数定义中进行了硬编码。我正在寻找一种更接近于此的语法:

(
df
.groupby(['group'])
.agg(avg_x=('x', 'mean'),
     wt_avg_y=('y', 'weighted_mean', weights='weight')
)

这是一个完全工作的示例,其中的代码似乎不必要地复杂:

import pandas as pd
import numpy as np

# sample dataset
df = pd.DataFrame({
    'group': ['a', 'a', 'b', 'b'],
    'x': [1, 2, 3, 4],
    'y': [5, 6, 7, 8],
    'weights': [0.75, 0.25, 0.75, 0.25]
})
df
#>>>    group   x   y   weights
#>>> 0      a   1   5   0.75
#>>> 1      a   2   6   0.25
#>>> 2      b   3   7   0.75
#>>> 3      b   4   8   0.25

# aggregation logic
summary = pd.concat(
    [
        df.groupby(['group']).x.mean(),
        df.groupby(['group']).apply(lambda x: np.average(x['y'], weights=x['weights']))
    ], axis=1
)
# manipulation to format the output of the aggregation
summary = summary.reset_index().rename(columns={'x': 'avg_x', 0: 'wt_avg_y'})

# final output
summary
#>>>    group   avg_x   wt_avg_y
#>>> 0      a   1.50    5.25
#>>> 1      b   3.50    7.25

4 个答案:

答案 0 :(得分:0)

如何?

grouped = df.groupby('group')

def wavg(group):
    group['mean_x'] = group['x'].mean()
    group['wavg_y'] = np.average(group['y'], weights=group.loc[:, "weights"])
    return group

grouped.apply(wavg)

答案 1 :(得分:0)

由于各组的权重总和为1,因此您可以照常分配新的列和groupby:

(df.assign(wt_avg_y=df['y']*df['weights'])
  .groupby('group')
  .agg({'x': 'mean', 'wt_avg_y':'sum', 'weights':'sum'})
  .assign(wt_avg_y=lambda x: x['wt_avg_y']/ x['weights'])
) 

输出:

         x  wt_avg_y  weights
group                        
a      1.5      5.25      1.0
b      3.5      7.25      1.0

答案 2 :(得分:0)

在整个DataFrame上使用.apply()方法是我所能达到的最简单的解决方案,它对功能定义中的列名进行硬编码。

import pandas as pd
import numpy as np

df = pd.DataFrame({
    'group': ['a', 'a', 'b', 'b'],
    'x': [1, 2, 3, 4],
    'y': [5, 6, 7, 8],
    'weights': [0.75, 0.25, 0.75, 0.25]
})

summary = (
    df
    .groupby(['group'])
    .apply(
        lambda x: pd.Series([
            np.mean(x['x']),
            np.average(x['y'], weights=x['weights'])
        ], index=['avg_x', 'wt_avg_y'])
    )
    .reset_index()
)
# final output
summary
#>>>    group   avg_x   wt_avg_y
#>>> 0      a   1.50    5.25
#>>> 1      b   3.50    7.25

答案 3 :(得分:0)

尝试:

df["weights"]=df["weights"].div(df.join(df.groupby("group")["weights"].sum(), on="group", rsuffix="_2").iloc[:, -1])
df["y"]=df["y"].mul(df["weights"])

res=df.groupby("group", as_index=False).agg({"x": "mean", "y": "sum"})

输出:

  group    x     y
0     a  1.5  5.25
1     b  3.5  7.25