因此,我有一个MultiIndex DataFrame,并且我无法找出行来修改行索引值。
在此示例中,我想将c = 1设置为“ a”索引为4:
import pandas as pd
import numpy as np
df = pd.DataFrame({('colA', 'x1'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan},
('colA', 'x2'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan},
('colA', 'x3'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan},
('colA', 'x4'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan}})
df.index.set_names(['a', 'b', 'c'], inplace=True)
print(df)
colA
x1 x2 x3 x4
a b c
1 NaN 0 NaN NaN NaN NaN
4 NaN 0 NaN NaN NaN NaN
所需的输出:
colA
x1 x2 x3 x4
a b c
1 NaN 0 NaN NaN NaN NaN
4 NaN 1 NaN NaN NaN NaN
感谢您的帮助。
答案 0 :(得分:3)
假设我们从df
开始。
x = df.reset_index()
x.loc[x[x.a == 4].index, 'c'] = 1
x = x.set_index(['a', 'b', 'c'])
print(x)
colA
x1 x2 x3 x4
a b c
1 NaN 0 NaN NaN NaN NaN
4 NaN 1 NaN NaN NaN NaN
答案 1 :(得分:2)
分离索引,对其进行处理,然后将其与数据放回一起。
Method-1
Method-2
# separate the index and process it
names = ['a', 'b', 'c'] # same as df.index.names
#dfd = pd.DataFrame(df.to_records())
dfd = df.index.to_frame().reset_index(drop=True)
dfd.loc[dfd['a']==4, ['c']] = 1
# prepare index for original dataframe: df
index = pd.MultiIndex.from_tuples([tuple(x) for x in dfd.loc[:, names].values], names=names)
## Method-1
# create new datframe with updated index
dfn = pd.DataFrame(df.values, index=index, columns=df.columns)
# dfn --> new dataframe
## Method-2
# reset the index of original dataframe df
df.set_index(index)
输出:
colA
x1 x2 x3 x4
a b c
1.0 NaN 0.0 NaN NaN NaN NaN
4.0 NaN 1.0 NaN NaN NaN NaN
import pandas as pd
import numpy as np
df = pd.DataFrame({('colA', 'x1'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan},
('colA', 'x2'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan},
('colA', 'x3'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan},
('colA', 'x4'): {(1, np.nan, 0): np.nan, (4, np.nan, 0): np.nan}})
df.index.set_names(['a', 'b', 'c'], inplace=True)