因此,我一直到一个网站获取NDC代码https://ndclist.com/?s=Solifenacin,我需要获取10位NDC代码,但是在当前网页上仅显示了8位NDC代码,如下图所示
因此,我单击带下划线的NDC代码。并获得此网页。
因此,我将这2个NDC代码复制并粘贴到Excel工作表中,然后在显示的第一个网页上重复其余代码的过程。但是此过程需要花费大量时间,并且想知道Python中是否有一个库可以为我复制和粘贴10位NDC代码或将它们存储在列表中,所以我可以在完成后打印列表第一页上的所有8位NDC代码。 BeautifulSoup是否可以工作,或者有更好的库来实现此过程?
编辑<<<< 实际上,我实际上需要再上一层,并且我一直在努力弄清楚,但是我一直失败了,显然,上一层网页是这个哑的html表,我只需要该表的一个元素。这是您单击第二级代码后的最后一个网页。
这是我的代码,但是一旦我运行它,它就会返回tr和None对象。
url ='https://ndclist.com/?s=Trospium'
soup = BeautifulSoup(requests.get(url).content, 'html.parser')
all_data = []
for a in soup.select('[data-title="NDC"] a[href]'):
link_url = a['href']
print('Processin link {}...'.format(link_url))
soup2 = BeautifulSoup(requests.get(link_url).content, 'html.parser')
for b in soup2.select('#product-packages a'):
link_url2 = b['href']
print('Processing link {}... '.format(link_url2))
soup3 = BeautifulSoup(requests.get(link_url2).content, 'html.parser')
for link in soup3.findAll('tr', limit=7)[1]:
print(link.name)
all_data.append(link.name)
print('Trospium')
print(all_data)
答案 0 :(得分:1)
是的,BeautifulSoup在这种情况下是理想的。该脚本将从页面上打印所有10位代码:
import requests
from bs4 import BeautifulSoup
url = 'https://ndclist.com/?s=Solifenacin'
soup = BeautifulSoup(requests.get(url).content, 'html.parser')
all_data = []
for a in soup.select('[data-title="NDC"] a[href]'):
link_url = a['href']
print('Processin link {}...'.format(link_url))
soup2 = BeautifulSoup(requests.get(link_url).content, 'html.parser')
for link in soup2.select('#product-packages a'):
print(link.text)
all_data.append(link.text)
# In all_data you have all codes, uncoment to print them:
# print(all_data)
打印:
Processin link https://ndclist.com/ndc/0093-5263...
0093-5263-56
0093-5263-98
Processin link https://ndclist.com/ndc/0093-5264...
0093-5264-56
0093-5264-98
Processin link https://ndclist.com/ndc/0591-3796...
0591-3796-19
Processin link https://ndclist.com/ndc/27241-037...
27241-037-03
27241-037-09
... and so on.
编辑:(我也从中获得说明的版本):
import requests
from bs4 import BeautifulSoup
url = 'https://ndclist.com/?s=Solifenacin'
soup = BeautifulSoup(requests.get(url).content, 'html.parser')
all_data = []
for a in soup.select('[data-title="NDC"] a[href]'):
link_url = a['href']
print('Processin link {}...'.format(link_url))
soup2 = BeautifulSoup(requests.get(link_url).content, 'html.parser')
for code, desc in zip(soup2.select('a > h4'), soup2.select('a + p.gi-1x')):
code = code.get_text(strip=True).split(maxsplit=1)[-1]
desc = desc.get_text(strip=True).split(maxsplit=2)[-1]
print(code, desc)
all_data.append((code, desc))
# in all_data you have all codes:
# print(all_data)
打印:
Processin link https://ndclist.com/ndc/0093-5263...
0093-5263-56 30 TABLET, FILM COATED in 1 BOTTLE
0093-5263-98 90 TABLET, FILM COATED in 1 BOTTLE
Processin link https://ndclist.com/ndc/0093-5264...
0093-5264-56 30 TABLET, FILM COATED in 1 BOTTLE
0093-5264-98 90 TABLET, FILM COATED in 1 BOTTLE
Processin link https://ndclist.com/ndc/0591-3796...
0591-3796-19 90 TABLET, FILM COATED in 1 BOTTLE
...and so on.