TensorFlow错误:ValueError:没有为任何变量提供渐变

时间:2020-05-12 13:24:32

标签: python tensorflow valueerror

我正在尝试运行以下tensorflow应用,但我不断收到与最后一行代码有关的错误。除最后一行外,一切都正常运行。有人可以帮忙吗?

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.models import load_model

df = pd.read_csv('kc_house_data.csv')
print(f"df.head():\n{df.head()}")

print(f"df.isnull().sum():\n{df.isnull().sum()}")

print(f"df.describe().transpose():\n{df.describe().transpose()}")

corr = df.corr()
print(f"corr:\n{corr}")

corr_sorted = corr['price'].sort_values()      
sort_df = df.sort_values('price', ascending=False)         
non_top_1_perc = sort_df.iloc[216:]

print(f"df.head(): {df.head()}")

df = df.drop('id', axis=1)

#convert do datetime
df['date'] = pd.to_datetime(df['date'])
#feature engineering
#extracting the year & month
df['year'] = df['date'].apply(lambda date: date.year)
df['month'] = df['date'].apply(lambda date: date.month)

monthly_prices = df.groupby('month').mean()['price']
#monthly_prices.plot()
#plt.show()
print(f"monthly_prices: {monthly_prices}")

yearly_prices = df.groupby('year').mean()['price']
print(f"yearly_prices: {yearly_prices}")

df = df.drop('date', axis=1)

df = df.drop('zipcode', axis=1)

#sklearn
X = df.drop('price', axis=1).values
y = df['price'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=101)

#perform the scaling to prevent data leakage from the test set
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
#do not fit to your test set because you don't want to assume prior information
X_test = scaler.transform(X_test)

X_train.shape

#tensorflow
model = Sequential()
model.add(Dense(19, activation='relu'))
model.add(Dense(19, activation='relu'))
model.add(Dense(19, activation='relu'))
model.add(Dense(19, activation='relu'))
model.add(Dense(1))

model.compile(optimizer='adam', loss_weights='mse')

model.fit(x=X_train, y=y_train, validation_data=(X_test, y_test), batch_size=128, epochs=400)

错误:

ValueError:没有为任何变量提供渐变:['sequential / dense / kernel:0','sequential / dense / bias:0','sequential / dense_1 / kernel:0','sequential / dense_1 / bias: 0','sequential / dense_2 / kernel:0','sequential / dense_2 / bias:0','sequential / dense_3 / kernel:0','sequential / dense_3 / bias:0','sequential / dense_4 / kernel: 0','sequential / dense_4 / bias:0']。

1 个答案:

答案 0 :(得分:1)

我非常确定您的错误是因为您没有指定loss,而仅指定了loss_weights。即将您的编译行更改为

model.compile(optimizer='adam', loss='mse')