spark scala将嵌套数据框转换为嵌套数据集

时间:2020-05-09 07:43:22

标签: scala dataframe apache-spark apache-spark-dataset

我有一个嵌套的数据框“ inputFlowRecordsAgg”,它具有以下模式

root
 |-- FlowI.key: string (nullable = true)
 |-- FlowS.minFlowTime: long (nullable = true)
 |-- FlowS.maxFlowTime: long (nullable = true)
 |-- FlowS.flowStartedCount: long (nullable = true)
 |-- FlowI.DestPort: integer (nullable = true)
 |-- FlowI.SrcIP: struct (nullable = true)
 |    |-- bytes: binary (nullable = true)
 |-- FlowI.DestIP: struct (nullable = true)
 |    |-- bytes: binary (nullable = true)
 |-- FlowI.L4Protocol: byte (nullable = true)
 |-- FlowI.Direction: byte (nullable = true)
 |-- FlowI.Status: byte (nullable = true)
 |-- FlowI.Mac: string (nullable = true)

想要转换为以下案例类别的嵌套数据集

case class InputFlowV1(val FlowI: FlowI,
                             val FlowS: FlowS)

case class FlowI(val Mac: String,
                 val SrcIP: IPAddress,
                 val DestIP: IPAddress,
                 val DestPort: Int,
                 val L4Protocol: Byte,
                 val Direction: Byte,
                 val Status: Byte,
                 var key: String = "")

case class FlowS(var minFlowTime: Long,
                          var maxFlowTime: Long,
                          var flowStartedCount: Long)

但是当我尝试使用 inputFlowRecordsAgg.as [InputFlowV1]

cannot resolve '`FlowI`' given input columns: [FlowI.DestIP,FlowI.Direction, FlowI.key, FlowS.maxFlowTime, FlowI.SrcIP, FlowS.flowStartedCount, FlowI.L4Protocol, FlowI.Mac, FlowI.DestPort, FlowS.minFlowTime, FlowI.Status];
org.apache.spark.sql.AnalysisException: cannot resolve '`FlowI`' given input columns: [FlowI.DestIP,FlowI.Direction, FlowI.key, FlowS.maxFlowTime, FlowI.SrcIP, FlowS.flowStartedCount, FlowI.L4Protocol, FlowI.Mac, FlowI.DestPort, FlowS.minFlowTime, FlowI.Status];
    at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)

有一条评论要求我提供完整的代码,就在这里

def getReducedFlowR(inputFlowRecords: Dataset[InputFlowV1],
                            @transient spark: SparkSession): Dataset[InputFlowV1]={


     val inputFlowRecordsAgg = inputFlowRecords.groupBy(column("FlowI.key") as "FlowI.key")
      .agg(min("FlowS.minFlowTime") as "FlowS.minFlowTime" , max("FlowS.maxFlowTime") as "FlowS.maxFlowTime",
        sum("FlowS.flowStartedCount") as "FlowS.flowStartedCount" 
        , first("FlowI.Mac") as "FlowI.Mac"
        , first("FlowI.SrcIP") as "FlowI.SrcIP" , first("FlowI.DestIP") as "FlowI.DestIP"
        ,first("FlowI.DestPort") as "FlowI.DestPort"
        , first("FlowI.L4Protocol") as "FlowI.L4Protocol"
        , first("FlowI.Direction") as "FlowI.Direction" , first("FlowI.Status") as "FlowI.Status")

        inputFlowRecordsAgg.printSchema()

        return inputFlowRecordsAgg.as[InputFlowV1]

        }

1 个答案:

答案 0 :(得分:0)

原因是您的案例类架构与实际数据架构不匹配,请检查下面的案例类架构。尝试将案例类架构与数据架构相匹配,它将起作用。

您的案例类模式为:

scala> df.printSchema
root
 |-- FlowI: struct (nullable = true)
 |    |-- Mac: string (nullable = true)
 |    |-- SrcIP: string (nullable = true)
 |    |-- DestIP: string (nullable = true)
 |    |-- DestPort: integer (nullable = false)
 |    |-- L4Protocol: byte (nullable = false)
 |    |-- Direction: byte (nullable = false)
 |    |-- Status: byte (nullable = false)
 |    |-- key: string (nullable = true)
 |-- FlowS: struct (nullable = true)
 |    |-- minFlowTime: long (nullable = false)
 |    |-- maxFlowTime: long (nullable = false)
 |    |-- flowStartedCount: long (nullable = false)

尝试更改您的代码,如下所示,它现在可以正常工作。

val inputFlowRecordsAgg = inputFlowRecords.groupBy(column("FlowI.key") as "key")
      .agg(min("FlowS.minFlowTime") as "minFlowTime" , max("FlowS.maxFlowTime") as "maxFlowTime",
        sum("FlowS.flowStartedCount") as "flowStartedCount" 
        , first("FlowI.Mac") as "Mac"
        , first("FlowI.SrcIP") as "SrcIP" , first("DestIP") as "DestIP"
        ,first("FlowI.DestPort") as "DestPort"
        , first("FlowI.L4Protocol") as "L4Protocol"
        , first("FlowI.Direction") as "Direction" , first("FlowI.Status") as "Status")
        .select(struct($"key",$"Mac",$"SrcIP",$"DestIP",$"DestPort",$"L4Protocol",$"Direction",$"Status").as("FlowI"),struct($"flowStartedCount",$"minFlowTime",$"maxFlowTime").as("FlowS")) // add this line & change based on your columns .. i have added roughly..:)