我有一年这样的5分钟数据:
df = pd.DataFrame([['1/1/2019 00:05', 1], ['1/1/2019 00:10', 5],['1/1/2019 00:15', 1], ['1/1/2019 00:20',3], ['1/1/2019 00:25', 1],
['1/1/2019 00:30', 2], ['1/1/2019 00:35', 6],['1/1/2019 00:40', 8],['1/1/2019 00:45', 1], ['1/1/2019 00:55', 2],
['1/1/2019 01:00', 8],['1/1/2019 01:05', 1], ['1/1/2019 01:10', 5],['1/1/2019 01:15', 1], ['1/1/2019 01:20',3],['1/1/2019 01:25', 1],
['1/1/2019 01:30', 2], ['1/1/2019 01:35', 6],['1/1/2019 01:40', 8],['1/1/2019 01:45', 1], ['1/1/2019 01:55', 2],
['1/1/2019 02:00', 8]],
columns = ['Date','Value'])
并且我希望在所有相应的时间里每小时换一次。现在,每一行对应于特定日期和特定月份的一小时。像这样:
df = pd.DataFrame([['day1hour0month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour1month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3],
['day1hour2month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour3month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3],
['day1hour4month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour5month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3],
['day1hour6month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour7month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3],
['day1hour8month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3], ['day1hour9month1', 1, 1, 3, 4, 1, 0, 1, 5, 2, 1, 3,3],
['day31hour23month12', 1, 1, 8, 0, 6, 5, 3, 1, 1, 2,3,5]],
columns = ['Date', 'min05', 'min10', 'min15', 'min20', 'min25',
'min30', 'min35', 'min40', 'min45', 'min50',
'min55', 'min60'])
有什么方法可以使用熊猫的时间序列功能(不使用for循环)吗?对于执行此操作的任何建议,我将不胜感激。
提前谢谢!
干杯。
答案 0 :(得分:1)
基于示例数据框:
In [2213]: df['Date'] = pd.to_datetime(df['Date'])
In [2191]: df1['dmh'] = 'day' + df.Date.dt.day.astype(str) + 'hour' + df.Date.dt.hour.astype(str) + 'month' + df.Date.dt.month.astype(str)
In [2199]: df['minute'] = 'min' + df.Date.dt.minute.astype(str)
In [2211]: df.pivot(index='dmh', columns='minute', values='Value')
Out[2211]:
minute min0 min10 min15 min20 min25 min30 min35 min40 min45 min5 min55
dmh
day1hour0month1 NaN 5.0 1.0 3.0 1.0 2.0 6.0 8.0 1.0 1.0 2.0
day1hour1month1 8.0 5.0 1.0 3.0 1.0 2.0 6.0 8.0 1.0 1.0 2.0
day1hour2month1 8.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN