我的问题是mapreduce programming in java
。
假设我有WordCount.java示例,标准mapreduce program
。我希望map函数收集一些信息,并返回到形成的reduce函数映射:<slaveNode_id,some_info_collected>
,
这样I can know what slave node collected what data
..任何想法如何?
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
谢谢!
答案 0 :(得分:5)
您要问的是让应用程序(您的map-reduce thingy)知道它运行的基础架构。
一般来说,答案是您的应用程序不需要此信息。每次调用Mapper和每次调用Reducer都可以在不同的节点上执行,也可以在同一节点上执行。 MapReduce的优点在于结果是相同的,因此对于您的应用程序:无所谓。
因此,API没有支持您的此请求的功能。
有乐趣学习Hadoop:)
P.S。我能想到的唯一方法(至少可以说是令人讨厌的)是你在Mapper中包含某种类型的系统调用,并向底层操作系统询问它的名称/属性/等。 这种结构会使你的应用程序非常不便携;即它不会在Windows或亚马逊上的Hadoop上运行。
答案 1 :(得分:1)
Wordcount是一个错误的例子。您想简单地将所有信息合并在一起。这反转了对wordcount的事情。
基本上你只是将slaveNode_id作为IntWritable
(如果可能的话)发布,信息发布为Text
。
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text,IntWritable, Text> {
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
// you have to split your data here: ID and value
IntWritable id = new IntWritable(YOUR_ID_HERE);
output.collect(id, word);
}
}
}
减速机会采用相同的方式:
public static class Reduce extends MapReduceBase implements Reducer<IntWritable, Text,IntWritable, Text> {
public void reduce(IntWritable key, Iterator<Text> values, OutputCollector<IntWritable,Text> output, Reporter reporter) throws IOException {
// now you have all the values for a slaveID as key. Do whatever you like with that...
for(Text value : values)
output.collect(key, value)
}
}