我有一个这样的数据框
# initialize list of lists
data = [[1, ['ABC', 'pqr']], [2, ['abc', 'XY']], [3, np.nan]]
# Create the pandas DataFrame
data = pd.DataFrame(data, columns = ['Name', 'Val'])
data
Name Val
0 1 [ABC, pqr]
1 2 [abc, XY]
2 3 NaN
我正在尝试将列表中的每个值都转换为小写
data['Val'] = data['Val'].apply(lambda x: np.nan if len(x) == 0 else [item.lower() for item in x])
data
但是我收到此错误
TypeError: object of type 'float' has no len()
预期的最终产量
Name Val
0 1 [abc, pqr]
1 2 [abc, xy]
2 3 NaN
答案 0 :(得分:1)
第一个想法是在不丢失值和进行处理的情况下筛选行:
m = data['Val'].notna()
data.loc[m, 'Val'] = data.loc[m, 'Val'].apply(lambda x: [item.lower() for item in x])
print (data)
Name Val
0 1 [abc, pqr]
1 2 [abc, xy]
2 3 NaN
或者您也只能处理list
过滤的isinstance
:
f = lambda x: [item.lower() for item in x] if isinstance(x, list) else np.nan
data['Val'] = data['Val'].apply(f)
print (data)
Name Val
0 1 [abc, pqr]
1 2 [abc, xy]
2 3 NaN