我正在尝试按索引合并3个数据帧,但到目前为止没有成功。
代码如下:
Private Sub IMRecomExIns_Click()
Dim db As DAO.Database
Dim rsData As DAO.Recordset
Dim strSQL As String
Set db = DBEngine(0)(0)
strSQL = "SELECT Recommendation, AmendReason FROM Table2 WHERE CoverType LIKE '*" & Me!cboCover & "*';"
Set rsData = db.OpenRecordset(strSQL)
If Not (rsData.BOF And rsData.EOF) Then
Me!IMRecomExIns.RowSource = rsData!Recommendation
Me!AmendReasonExIns.RowSource = rsData!AmendReason
End If
rsData.Close
Set rsData = Nothing
Set db = Nothing
End Sub
如果我尝试将其导出为csv,则会收到如下错误(当我尝试打印dfx.columns时出现类似错误): 'tuple'对象没有属性'to_csv'
我想要的输出是以下三个数据框的合并(带有各自的后缀),请提供帮助。
[注:下面的表非常简化,原始表由数十列和数千行组成,因此需要实用的合并方法]
答案 0 :(得分:1)
尝试:
for s,el in zip(suffixes, dfs):
el.columns=[str(col)+s for col in el.columns]
dfx=pd.concat(dfs, ignore_index=True, sort=False, axis=1)
对于我使用的测试用例:
import pandas as pd
dfs=[pd.DataFrame({"x": [1,2,7], "y": list("ghi")}), pd.DataFrame({"x": [5,6], "z": [4,4]}), pd.DataFrame({"x": list("acgjksd")})]
suffixes=["_1", "_2", "_3"]
for s,el in zip(suffixes, dfs):
el.columns=[str(col)+s for col in el.columns]
>>> pd.concat(dfs, ignore_index=True, sort=False, axis=1)
x_1 y_1 x_2 z_2 x_3
0 1.0 g 5.0 4.0 a
1 2.0 h 6.0 4.0 c
2 7.0 i NaN NaN g
3 NaN NaN NaN NaN j
4 NaN NaN NaN NaN k
5 NaN NaN NaN NaN s
6 NaN NaN NaN NaN d
修改:
for s,el in zip(suffixes, dfs):
el.columns=[str(col)+s for col in el.columns]
el.set_index('ID', inplace=True)
dfx=pd.concat(dfs, ignore_index=False, sort=False, axis=1).reset_index()