当我通过Conda安装tensorflow-gpu时;它给了我以下输出:
conda install tensorflow-gpu
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /home/psychotechnopath/anaconda3/envs/DeepLearning3.6
added / updated specs:
- tensorflow-gpu
The following packages will be downloaded:
package | build
---------------------------|-----------------
_tflow_select-2.1.0 | gpu 2 KB
cudatoolkit-10.1.243 | h6bb024c_0 347.4 MB
cudnn-7.6.5 | cuda10.1_0 179.9 MB
cupti-10.1.168 | 0 1.4 MB
tensorflow-2.1.0 |gpu_py36h2e5cdaa_0 4 KB
tensorflow-base-2.1.0 |gpu_py36h6c5654b_0 155.9 MB
tensorflow-gpu-2.1.0 | h0d30ee6_0 3 KB
------------------------------------------------------------
Total: 684.7 MB
The following NEW packages will be INSTALLED:
cudatoolkit pkgs/main/linux-64::cudatoolkit-10.1.243-h6bb024c_0
cudnn pkgs/main/linux-64::cudnn-7.6.5-cuda10.1_0
cupti pkgs/main/linux-64::cupti-10.1.168-0
tensorflow-gpu pkgs/main/linux-64::tensorflow-gpu-2.1.0-h0d30ee6_0
我看到安装tensorflow-gpu会自动触发cudatoolkit和cudnn的安装。这是否意味着我不再需要手动安装CUDA和CUDNN即可使用tensorflow-gpu?此CUDA的conda安装在哪里?
我首先以旧方式安装了CUDA和CuDNN(例如,按照以下安装说明进行操作:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html)
然后我注意到tensorflow-gpu也在安装cuda和cudnn
我现在是否安装了两个版本的CUDA / CuDNN,我该如何检查?
答案 0 :(得分:4)
我现在是否安装了两个版本的CUDA,我该如何检查?
否。
conda将安装支持其提供的CUDA加速软件包所需的最少可再发行库组件。程序包名称cudatoolkit
是一个完整的误称。这不是什么。即使现在它的范围已从以前的范围(从原来的5个文件大大扩展了,我认为在某些时候他们也一定已经从NVIDIA获得了许可协议,因为其中一些不在/不在官方的“自由重新分发”列表AFAIK),它基本上仍然只是少数几个库。
您可以自己检查:
cat /opt/miniconda3/conda-meta/cudatoolkit-10.1.168-0.json
{
"build": "0",
"build_number": 0,
"channel": "https://repo.anaconda.com/pkgs/main/linux-64",
"constrains": [],
"depends": [],
"extracted_package_dir": "/opt/miniconda3/pkgs/cudatoolkit-10.1.168-0",
"features": "",
"files": [
"lib/cudatoolkit_config.yaml",
"lib/libcublas.so",
"lib/libcublas.so.10",
"lib/libcublas.so.10.2.0.168",
"lib/libcublasLt.so",
"lib/libcublasLt.so.10",
"lib/libcublasLt.so.10.2.0.168",
"lib/libcudart.so",
"lib/libcudart.so.10.1",
"lib/libcudart.so.10.1.168",
"lib/libcufft.so",
"lib/libcufft.so.10",
"lib/libcufft.so.10.1.168",
"lib/libcufftw.so",
"lib/libcufftw.so.10",
"lib/libcufftw.so.10.1.168",
"lib/libcurand.so",
"lib/libcurand.so.10",
"lib/libcurand.so.10.1.168",
"lib/libcusolver.so",
"lib/libcusolver.so.10",
"lib/libcusolver.so.10.1.168",
"lib/libcusparse.so",
"lib/libcusparse.so.10",
"lib/libcusparse.so.10.1.168",
"lib/libdevice.10.bc",
"lib/libnppc.so",
"lib/libnppc.so.10",
"lib/libnppc.so.10.1.168",
"lib/libnppial.so",
"lib/libnppial.so.10",
"lib/libnppial.so.10.1.168",
"lib/libnppicc.so",
"lib/libnppicc.so.10",
"lib/libnppicc.so.10.1.168",
"lib/libnppicom.so",
"lib/libnppicom.so.10",
"lib/libnppicom.so.10.1.168",
"lib/libnppidei.so",
"lib/libnppidei.so.10",
"lib/libnppidei.so.10.1.168",
"lib/libnppif.so",
"lib/libnppif.so.10",
"lib/libnppif.so.10.1.168",
"lib/libnppig.so",
"lib/libnppig.so.10",
"lib/libnppig.so.10.1.168",
"lib/libnppim.so",
"lib/libnppim.so.10",
"lib/libnppim.so.10.1.168",
"lib/libnppist.so",
"lib/libnppist.so.10",
"lib/libnppist.so.10.1.168",
"lib/libnppisu.so",
"lib/libnppisu.so.10",
"lib/libnppisu.so.10.1.168",
"lib/libnppitc.so",
"lib/libnppitc.so.10",
"lib/libnppitc.so.10.1.168",
"lib/libnpps.so",
"lib/libnpps.so.10",
"lib/libnpps.so.10.1.168",
"lib/libnvToolsExt.so",
"lib/libnvToolsExt.so.1",
"lib/libnvToolsExt.so.1.0.0",
"lib/libnvblas.so",
"lib/libnvblas.so.10",
"lib/libnvblas.so.10.2.0.168",
"lib/libnvgraph.so",
"lib/libnvgraph.so.10",
"lib/libnvgraph.so.10.1.168",
"lib/libnvjpeg.so",
"lib/libnvjpeg.so.10",
"lib/libnvjpeg.so.10.1.168",
"lib/libnvrtc-builtins.so",
"lib/libnvrtc-builtins.so.10.1",
"lib/libnvrtc-builtins.so.10.1.168",
"lib/libnvrtc.so",
"lib/libnvrtc.so.10.1",
"lib/libnvrtc.so.10.1.168",
"lib/libnvvm.so",
"lib/libnvvm.so.3",
"lib/libnvvm.so.3.3.0"
]
.....
即您将获得(记住上面的大多数“文件”只是符号链接)
conda安装的CUDNN软件包是可再发行的二进制发行版,与NVIDIA发行的二进制发行版完全相同-正好是两个文件,一个头文件和一个库。
您仍然需要安装受支持的NVIDIA驱动程序,以使conda安装的tensorflow正常工作。