错误
ValueError: Shape must be rank 2 but is rank 1 for 'loss/dense_2_loss/Npairloss/MatMul' (op: 'MatMul') with input shapes: [?], [?,10]
。
def Npairloss(y_true,y_pred):
l2_reg = 0.02
anchors = y_pred[:,0] # (n, embedding_size)
positives = y_pred[:,1] # (n, embedding_size)
negatives = y_pred[:2] # (n, n-1, embedding_size)
sub_n_p = negatives - positives
trans_a= K.transpose(anchors)
logit = K.dot(trans_a,sub_n_p) # (n, 1, n-1)
x = K.sum(K.exp(logit), 2) # (n, 1)
loss = K.mean(K.log(1 + x))
l2_loss = K.sum(anchors ** 2 + positives ** 2) / anchors.shape[0]
losses = loss + l2_reg * l2_loss
return losses
我正尝试在MNIST的Keras学习中实现N对丢失。这里的anchor和positive来自同一类别,anchor和negative来自不同的类别。 我不知道怎么了。非常感谢您的帮助。