将不互斥的多个虚拟变量转换为单个类别变量,并添加新行

时间:2020-04-27 14:35:36

标签: r dummy-variable

我有以下数据框:

data <- data.frame(id=c(1, 1, 2, 2), 
task=c(1, 2, 1, 2),
strategy1=c("1", "1", "0", "1"),
strategy2=c("0", "0", "1", "1"),
strategy3=c("0", "1", "0", "1"))

我的目标是将用于不同策略的虚拟变量组合为单个类别变量“策略”。如果参与者在一项任务期间使用了多种策略,则必须相应地创建具有相同“ id”和“ task”编号的新行,因为应该只有一个“ strategy”变量。

对于给定的示例,数据框最终应看起来像这样:

data_single <- data.frame(id=c(1, 1, 1, 2, 2, 2, 2),
task=c(1, 2, 2, 1, 2, 2, 2),
strategy=c("1", "1", "3", "2", "1", "2", "3"))

有人可以告诉我如何实现这一目标吗?

2 个答案:

答案 0 :(得分:1)

library(tidyr)
library(dplyr)
tidyr::pivot_longer(
  data, 
  cols = starts_with("strategy"),
  names_prefix = "strategy", 
  names_to = "strategy"
) %>%
  filter(value == 1) %>%
  select(-value)
# # A tibble: 7 x 3
#      id  task strategy
#   <dbl> <dbl> <chr>   
# 1     1     1 1       
# 2     1     2 1       
# 3     1     2 3       
# 4     2     1 2       
# 5     2     2 1       
# 6     2     2 2       
# 7     2     2 3  

答案 1 :(得分:0)

我们也可以使用data.table

library(data.table)
melt(setDT(data), measure = patterns('^strategy'), 
     variable.name = 'strategy')[value == 1, .(id, task, strategy)]