我是cuda的新手。我想将两个2d数组加到第三个数组中。 我使用以下代码:
cudaMallocPitch((void**)&device_a, &pitch, 2*sizeof(int),2);
cudaMallocPitch((void**)&device_b, &pitch, 2*sizeof(int),2);
cudaMallocPitch((void**)&device_c, &pitch, 2*sizeof(int),2);
现在我的问题是我不想将这些数组用作扁平的二维数组 所有在我的内核代码中我想要di使用两个for循环&将结果放在第三个数组中,如
__global__ void add(int *dev_a ,int *dev_b,int* dec_c)
{
for i=0;i<2;i++)
{
for j=0;j<2;j++)
{
dev_c[i][j]=dev_a[i][j]+dev_b[i][j];
}
}
}
我如何在CUDA中做到这一点? 请告诉我如何以这种方式使用二维阵列?
使用2d-array的内核调用应该是什么? 如果可能,请使用代码示例进行解释。
答案 0 :(得分:17)
简短的回答是,你做不到。 cudaMallocPitch()
函数正如其名称所暗示的那样,它分配了线性内存,其中音高被选择为GPU内存控制器和纹理硬件的最佳选择。
如果你想在内核中使用指针数组,那么内核代码必须如下所示:
__global___ void add(int *dev_a[] ,int *dev_b[], int* dec_c[])
{
for i=0;i<2;i++) {
for j=0;j<2;j++) {
dev_c[i][j]=dev_a[i][j]+dev_b[i][j];
}
}
}
然后你需要在主机端进行嵌套的cudaMalloc
调用来构造指针数组并将其复制到设备内存中。对于相当简单的2x2示例,分配单个数组的代码如下所示:
int ** h_a = (int **)malloc(2 * sizeof(int *));
cudaMalloc((void**)&h_a[0], 2*sizeof(int));
cudaMalloc((void**)&h_a[1], 2*sizeof(int));
int **d_a;
cudaMalloc((void ***)&d_a, 2 * sizeof(int *));
cudaMemcpy(d_a, h_a, 2*sizeof(int *), cudaMemcpyHostToDevice);
这将在d_a中保留指定的指针设备数组,并将其传递给内核。
出于代码复杂性和性能原因,你真的不想这样做,使用CUDA代码中的指针数组比使用线性内存的替代方法更难和。
为了显示在CUDA中使用指针数组的愚蠢行为,下面是一个完整的示例问题示例,它结合了上述两个想法:
#include <cstdio>
__global__ void add(int * dev_a[], int * dev_b[], int * dev_c[])
{
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{
dev_c[i][j]=dev_a[i][j]+dev_b[i][j];
}
}
}
inline void GPUassert(cudaError_t code, char * file, int line, bool Abort=true)
{
if (code != 0) {
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code),file,line);
if (Abort) exit(code);
}
}
#define GPUerrchk(ans) { GPUassert((ans), __FILE__, __LINE__); }
int main(void)
{
const int aa[2][2]={{1,2},{3,4}};
const int bb[2][2]={{5,6},{7,8}};
int cc[2][2];
int ** h_a = (int **)malloc(2 * sizeof(int *));
for(int i=0; i<2;i++){
GPUerrchk(cudaMalloc((void**)&h_a[i], 2*sizeof(int)));
GPUerrchk(cudaMemcpy(h_a[i], &aa[i][0], 2*sizeof(int), cudaMemcpyHostToDevice));
}
int **d_a;
GPUerrchk(cudaMalloc((void ***)&d_a, 2 * sizeof(int *)));
GPUerrchk(cudaMemcpy(d_a, h_a, 2*sizeof(int *), cudaMemcpyHostToDevice));
int ** h_b = (int **)malloc(2 * sizeof(int *));
for(int i=0; i<2;i++){
GPUerrchk(cudaMalloc((void**)&h_b[i], 2*sizeof(int)));
GPUerrchk(cudaMemcpy(h_b[i], &bb[i][0], 2*sizeof(int), cudaMemcpyHostToDevice));
}
int ** d_b;
GPUerrchk(cudaMalloc((void ***)&d_b, 2 * sizeof(int *)));
GPUerrchk(cudaMemcpy(d_b, h_b, 2*sizeof(int *), cudaMemcpyHostToDevice));
int ** h_c = (int **)malloc(2 * sizeof(int *));
for(int i=0; i<2;i++){
GPUerrchk(cudaMalloc((void**)&h_c[i], 2*sizeof(int)));
}
int ** d_c;
GPUerrchk(cudaMalloc((void ***)&d_c, 2 * sizeof(int *)));
GPUerrchk(cudaMemcpy(d_c, h_c, 2*sizeof(int *), cudaMemcpyHostToDevice));
add<<<1,1>>>(d_a,d_b,d_c);
GPUerrchk(cudaPeekAtLastError());
for(int i=0; i<2;i++){
GPUerrchk(cudaMemcpy(&cc[i][0], h_c[i], 2*sizeof(int), cudaMemcpyDeviceToHost));
}
for(int i=0;i<2;i++) {
for(int j=0;j<2;j++) {
printf("(%d,%d):%d\n",i,j,cc[i][j]);
}
}
return cudaThreadExit();
}
我建议你研究它,直到你理解它的作用,以及为什么与使用线性记忆相比这是一个糟糕的想法。
答案 1 :(得分:2)
您不需要在设备内部使用for循环。试试这段代码。
#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#include <time.h>
#define N 800
__global__ void matrixAdd(float* A, float* B, float* C){
int i = threadIdx.x;
int j = blockIdx.x;
C[N*j+i] = A[N*j+i] + B[N*j+i];
}
int main (void) {
clock_t start = clock();
float a[N][N], b[N][N], c[N][N];
float *dev_a, *dev_b, *dev_c;
cudaMalloc((void **)&dev_a, N * N * sizeof(float));
cudaMalloc((void **)&dev_b, N * N * sizeof(float));
cudaMalloc((void **)&dev_c, N * N * sizeof(float));
for (int i = 0; i < N; i++){
for (int j = 0; j < N; j++){
a[i][j] = rand() % 10;
b[i][j] = rand() % 10;
}
}
cudaMemcpy(dev_a, a, N * N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N * N * sizeof(float), cudaMemcpyHostToDevice);
matrixAdd <<<N,N>>> (dev_a, dev_b, dev_c);
cudaMemcpy(c, dev_c, N * N * sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < N; i++){
for (int j = 0; j < N; j++){
printf("[%d, %d ]= %f + %f = %f\n",i,j, a[i][j], b[i][j], c[i][j]);
}
}
printf("Time elapsed: %f\n", ((double)clock() - start) / CLOCKS_PER_SEC);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
}