我正在尝试使用Keras对单变量时间序列进行预测。
NN模型看起来像
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d (Conv1D) (None, None, 25) 150
_________________________________________________________________
lstm (LSTM) (None, None, 1024) 4300800
_________________________________________________________________
dropout (Dropout) (None, None, 1024) 0
_________________________________________________________________
lstm_1 (LSTM) (None, None, 1024) 8392704
_________________________________________________________________
dropout_1 (Dropout) (None, None, 1024) 0
_________________________________________________________________
lstm_2 (LSTM) (None, None, 1024) 8392704
_________________________________________________________________
dropout_2 (Dropout) (None, None, 1024) 0
_________________________________________________________________
lstm_3 (LSTM) (None, None, 1024) 8392704
_________________________________________________________________
dropout_3 (Dropout) (None, None, 1024) 0
_________________________________________________________________
dense (Dense) (None, None, 1) 1025
=================================================================
Total params: 29,480,087
Trainable params: 29,480,087
Non-trainable params: 0
_________________________________________________________________
使用该系列的前三个值对我的数据进行加窗预测下一个。 因此我的测试数据集看起来像
list(dataset.as_numpy_iterator())
[array([[[ 0. ],
[ 0.02346429],
[ 0.04559132]],
[[ 0. ],
[ 0.02161974],
[ 0.13014923]],
[[ 0. ],
[ 0.10623277],
[-0.02918068]],
[[ 0. ],
[-0.12240955],
[-0.21869095]]])]
一切顺利,但是当我将其输入model.predict(dataset)
时,它输出的结果是
array([[[ 0.01316399],
[ 0.03728709],
[ 0.06164959]],
[[ 0.01316399],
[ 0.03512047],
[ 0.1292857 ]],
[[ 0.01316399],
[ 0.1172413 ],
[-0.01671433]],
[[ 0.01316399],
[-0.10654409],
[-0.16395506]]], dtype=float32)
,此示例的形状为(4, 3, 1)
由于我的NN的最后一层是具有单个单位的密集区域,因此我只希望对输入要素的每个三元组得到一个预测。为什么每个训练示例的预测中似乎都有三个输出?
答案 0 :(得分:1)
在最后一个LSTM层中,设置参数return_sequences = False。
LSTM(..., return_sequences=False)