我困在一行代码上,结果整个周末都停滞在一个项目上。
我正在一个使用BERT进行句子分类的项目。我已经成功地训练了模型,并且可以使用run_classifier.py中的示例代码来测试结果。
我可以使用以下示例代码导出模型(该示例代码已经过重新发布,因此我认为它适合该模型):
def export(self):
def serving_input_fn():
label_ids = tf.placeholder(tf.int32, [None], name='label_ids')
input_ids = tf.placeholder(tf.int32, [None, self.max_seq_length], name='input_ids')
input_mask = tf.placeholder(tf.int32, [None, self.max_seq_length], name='input_mask')
segment_ids = tf.placeholder(tf.int32, [None, self.max_seq_length], name='segment_ids')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'label_ids': label_ids, 'input_ids': input_ids,
'input_mask': input_mask, 'segment_ids': segment_ids})()
return input_fn
self.estimator._export_to_tpu = False
self.estimator.export_savedmodel(self.output_dir, serving_input_fn)
我还可以加载导出的估算器(导出功能将导出的模型保存到带有时间戳的子目录中):
predict_fn = predictor.from_saved_model(self.output_dir + timestamp_number)
但是,对于我自己的一生,我无法弄清楚要为预测输入提供什么给旱情。这是我目前最好的代码:
def predict(self):
input = 'Test input'
guid = 'predict-0'
text_a = tokenization.convert_to_unicode(input)
label = self.label_list[0]
examples = [InputExample(guid=guid, text_a=text_a, text_b=None, label=label)]
features = convert_examples_to_features(examples, self.label_list,
self.max_seq_length, self.tokenizer)
predict_input_fn = input_fn_builder(features, self.max_seq_length, False)
predict_fn = predictor.from_saved_model(self.output_dir + timestamp_number)
result = predict_fn(predict_input_fn) # this generates an error
print(result)
我提供给predict_fn似乎无关紧要:examples数组,features数组,predict_input_fn函数。显然,predict_fn需要某种类型的字典-但是我尝试过的每件事都会由于张量不匹配或其他通常表示错误的输入而生成异常。
我认为from_saved_model函数需要与模型测试函数相同的输入-显然不是这种情况。
似乎很多人都问了这个问题-“如何使用导出的BERT TensorFlow模型进行推理?” -并且没有答案:
有帮助吗?预先感谢。
答案 0 :(得分:1)
谢谢你的这篇文章。您的serving_input_fn
是我所缺少的!需要更改您的predict
函数,以直接提供功能dict,而不是使用predict_input_fn:
def predict(sentences):
labels = [0, 1]
input_examples = [
run_classifier.InputExample(
guid="",
text_a = x,
text_b = None,
label = 0
) for x in sentences] # here, "" is just a dummy label
input_features = run_classifier.convert_examples_to_features(
input_examples, labels, MAX_SEQ_LEN, tokenizer
)
# this is where pred_input_fn is replaced
all_input_ids = []
all_input_mask = []
all_segment_ids = []
all_label_ids = []
for feature in input_features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_segment_ids.append(feature.segment_ids)
all_label_ids.append(feature.label_id)
pred_dict = {
'input_ids': all_input_ids,
'input_mask': all_input_mask,
'segment_ids': all_segment_ids,
'label_ids': all_label_ids
}
predict_fn = predictor.from_saved_model('../testing/1589418540')
result = predict_fn(pred_dict)
print(result)
pred_sentences = [
"That movie was absolutely awful",
"The acting was a bit lacking",
"The film was creative and surprising",
"Absolutely fantastic!",
]
predict(pred_sentences)
{'probabilities': array([[-0.3579178 , -1.2010787 ],
[-0.36648935, -1.1814401 ],
[-0.30407643, -1.3386648 ],
[-0.45970002, -0.9982413 ],
[-0.36113673, -1.1936386 ],
[-0.36672896, -1.1808994 ]], dtype=float32), 'labels': array([0, 0, 0, 0, 0, 0])}
但是,pred_sentences
中句子返回的概率与我使用的estimator.predict(predict_input_fn)
概率不匹配,其中estimator
是在同一(python)会话中使用的微调模型。例如,使用estimator
的[-0.27276006,-1.4324446]与使用predictor
的[-0.26713806,-1.4505868]。