我用检查点保存我的模型,
checkpoint = ModelCheckpoint("Models/FVA_MEL.h5", monitor='val_accuracy', verbose=1, save_best_only=True, mode='max', period=1)
我用load_model加载我的模型
from keras.models import load_model,save_model
modell = load_model("Models/FVA_MEL.h5")
但是加载的模型与我尝试另存为.tf的相同测试数据不具有相同的准确性,但是它不起作用。请帮助我
答案 0 :(得分:0)
首先检查Keras文档:https://keras.io/callbacks/
“ save_best_only = True”和最后一个时期的权重之间可能存在差异。 您应该在最后一个时期使用权重,而不是最好的时期。
骨骼(请参见以下各节)
#{model}
{model = Sequential()}
{Your model}
#{model.comply}
#{model.compile()}
#{model.fit()}
#{model.save('your_name.h5')}
我的示例如下:
# model
input_shape=(100,50,layers)
model = Sequential()
activation = 'relu'
model.add(Conv2D(filters=16, kernel_size=(3,3),data_format='channels_last', input_shape=input_shape, padding='same', activation=activation))
model.add(Flatten())
model.add(Dense(256, activation=activation))
model.add(Dropout(0.2))
model.add(Dense(n_levels, activation='softmax'))
# model.save() # if you want to save model structure only (no weights)
# or (if you have saved model in JSON)
#with open(os.path.join(models_wd,model_name), 'r') as model_file:
# model = model_from_json(model_file.read())
# model_file.close()
#{model.compile}
adam = optimizers.Adam()
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=12, verbose=1, mode='auto', baseline=None, restore_best_weights=False)
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1, mode='auto', cooldown=0, min_lr=0.00001)
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=adam)
#{model.summary}
model.summary()
#{model.fit}
history = model.fit(xtr, ytr, batch_size=8, epochs=n_epochs, verbose=2, validation_data=(xest,yest), callbacks=[learning_rate_reduction, early_stopping])
#{model.save('your_name.h5')}
model.save('your_name.h5')
然后在your_name.h5文件中,您将获得与上一个时期相同的权重,在加载模型后,您将获得相同的结果。