给出如下数据框:
date city gdp gdp1 gdp2 gross domestic product pop pop1 pop2
0 2001-03 bj 3.0 NaN NaN NaN 7.0 NaN NaN
1 2001-06 bj 5.0 NaN NaN NaN 6.0 6.0 NaN
2 2001-09 bj 8.0 NaN NaN 8.0 4.0 4.0 NaN
3 2001-12 bj 7.0 NaN 7.0 NaN 2.0 NaN 2.0
4 2001-03 sh 4.0 4.0 NaN NaN 3.0 NaN NaN
5 2001-06 sh 5.0 NaN NaN 5.0 5.0 5.0 NaN
6 2001-09 sh 9.0 NaN NaN NaN 4.0 4.0 NaN
7 2001-12 sh 3.0 3.0 NaN NaN 6.0 NaN 6.0
我想将NaN
和gdp
中的pop
替换为gdp1
,gdp2
,gross domestic product
和{{1} },pop1
。
pop2
以下代码有效,但我想知道是否有可能使它更简洁,因为我有很多类似的列?
date city gdp pop
0 2001-03 bj 3 7
1 2001-06 bj 5 6
2 2001-09 bj 8 4
3 2001-12 bj 7 2
4 2001-03 sh 4 3
5 2001-06 sh 5 5
6 2001-09 sh 9 4
7 2001-12 sh 3 6
答案 0 :(得分:2)
想法是使用回填由DataFrame.filter
过滤的缺失值,如果可能的话,每组更多的值则从左侧优先处理列,如果将.bfill(axis=1).iloc[:, 0]
更改为.ffill(axis=1).iloc[:, -1]
,则从右侧:
#if first column is gdp, pop
df['gdp'] = df.filter(like='gdp').bfill(axis=1)['gdp']
df['pop'] = df.filter(like='pop').bfill(axis=1)['pop']
#if possible any first column
df['gdp'] = df.filter(like='gdp').bfill(axis=1).iloc[:, 0]
df['pop'] = df.filter(like='pop').bfill(axis=1).iloc[:, 0]
但是,如果只有一个非缺失值是可能的,请使用max
,min
...:
df['gdp'] = df.filter(like='gdp').max(axis=1)
df['pop'] = df.filter(like='pop').max(axis=1)
如果需要按列表指定列名:
gdp_c = ['gdp1','gdp2','gross domestic product']
pop_c = ['pop1','pop2']
df['gdp'] = df[gdp_c].bfill(axis=1).iloc[:, 0]
df['pop'] = df[pop_c].bfill(axis=1).iloc[:, 0]
df = df[['date','city','gdp','pop']]
print (df)
date city gdp pop
0 2001-03 bj 3.0 7.0
1 2001-06 bj 5.0 6.0
2 2001-09 bj 8.0 4.0
3 2001-12 bj 7.0 2.0
4 2001-03 sh 4.0 3.0
5 2001-06 sh 5.0 5.0
6 2001-09 sh 9.0 4.0
7 2001-12 sh 3.0 6.0