我有一个pyspark数据框列
df.groupBy('Gender').count().show()
(5) Spark Jobs
+------+------+
|Gender| count|
+------+------+
| F| 44015|
| null| 42175|
| M|104423|
| | 1|
+------+------+
我正在做regexp_replace
#df = df.fillna({'Gender':'missing'})
df = df.withColumn('Gender', regexp_replace('Gender', 'F','Female'))
df = df.withColumn('Gender', regexp_replace('Gender', 'M','Male'))
df = df.withColumn('Gender', regexp_replace('Gender', ' ','missing'))
可以在一行中完成而不是在每一行中调用df?
答案 0 :(得分:1)
如果您不想使用 regexp_replace
3次,则可以使用 when/otherwise
子句。< / p>
from pyspark.sql import functions as F
from pyspark.sql.functions import when
df.withColumn("Gender", F.when(F.col("Gender")=='F',F.lit("Female"))\
.when(F.col("Gender")=='M',F.lit("Male"))\
.otherwise(F.lit("missing"))).show()
+-------+------+
| Gender| count|
+-------+------+
| Female| 44015|
|missing| 42175|
| Male|104423|
|missing| 1|
+-------+------+
或者您也可以像这样一行一行地完成三个 regexp_replace
:
from pyspark.sql.functions import regexp_replace
df.withColumn('Gender', regexp_replace(regexp_replace(regexp_replace('Gender', 'F','Female'),'M','Male'),' ','missing')).show()
+-------+------+
| Gender| count|
+-------+------+
| Female| 44015|
| null| 42175|
| Male|104423|
|missing| 1|
+-------+------+
我认为 when/otherwise
的性能应优于 3 regexp_replace
,因为您需要使用 { {1}} 也与他们在一起。