将时间戳基于其他时间戳添加到熊猫数据框的Python方法

时间:2020-04-15 18:59:10

标签: python pandas dataframe replace vectorization

索引到熊猫数据帧以更改值的时髦方式对我来说很困难。我永远无法弄清楚是要更改数据框元素的值还是要更改该值的副本。

对于数组操作,我也是python语法的新手,并努力将索引(如C ++中)的循环转换为python中的向量操作。 我的问题是我希望根据其他列中的值向数据框添加pandas.Timestamp值列。可以说我从一个像这样的数据帧开始

import pandas as pd
import numpy as np
mydata = np.transpose([ [11, 22, 33, 44, 66, 77],
         pd.to_datetime(['2015-02-26', '2015-02-27', '2015-02-25', np.NaN, '2015-01-24', '2015-03-24'], errors='coerce'),
         pd.to_datetime(['2015-02-24', np.NaN, '2015-03-24', '2015-02-26', '2015-02-27', '2015-02-25'], errors='coerce')
       ])

df = pd.DataFrame(columns=['ID', 'BEFORE', 'AFTER'], data=mydata)

df.head(6)

返回

    ID  BEFORE      AFTER
0   11  2015-02-26  2015-02-24
1   22  2015-02-27  NaT
2   33  2015-02-25  2015-03-24
3   44  NaT         2015-02-26
4   66  2015-01-24  2015-02-27
5   77  2015-03-24  2015-02-25

我想查找日期前后的较小日期,然后在结果中添加一个名为RELEVANT_DATE的新列。然后,我可以放下之前和之后。有无数种方法可以做到这一点,但对我来说,几乎所有方法都不起作用。我能做的最好的就是这个

# fix up NaT's only in specific columns, real data has more columns
futureDate = pd.to_datetime('2099-01-01')
df.fillna({'BEFORE':futureDate, 'AFTER':futureDate}, inplace=True)

# super clunky solution
numRows = np.shape(df)[0]
relevantDate = []
for index in range(numRows):
    if df.loc[index, 'AFTER'] >= df.loc[index, 'BEFORE']:
        relevantDate.append(df.loc[index, 'BEFORE'])
    else:
        relevantDate.append(df.loc[index, 'AFTER'])

# add relevant date column to df
df['RELEVANT_DATE'] = relevantDate

# delete irrelevant dates
df.drop(labels=['BEFORE', 'AFTER'], axis=1, inplace=True)

df.head(6)

返回

    ID  RELEVANT_DATE
0   11  2015-02-24
1   22  2015-02-27
2   33  2015-02-25
3   44  2015-02-26
4   66  2015-01-24
5   77  2015-02-25

这种方法超级慢。由于只有几百万行,所以花太长时间才有用。

您可以为此提供pythonic风格的解决方案吗?回想一下,我既无法向量化这些操作,又无法确保在DataFrame中将它们设置为真实值。

1 个答案:

答案 0 :(得分:1)

在一行中取最小值(axis=1)。设置索引,以便您可以随身携带'ID'

df.set_index('ID').min(axis=1).rename('RELEVANT DATE').reset_index()

   ID RELEVANT DATE
0  11    2015-02-24
1  22    2015-02-27
2  33    2015-02-25
3  44    2015-02-26
4  66    2015-01-24
5  77    2015-02-25

或将新列分配给您现有的DataFrame:

df['RELEVANT DATE'] = df[['BEFORE', 'AFTER']].min(1)