从熊猫中不同数据帧中将这两列相乘时获得NaN

时间:2020-04-15 12:24:59

标签: python pandas

我试图将来自两个不同数据帧的列乘以一个新的df。第一个数据框(df1)包含不同项目的价格,列标题是日期。第二个数据帧(df2)包含每个项目的数量。

df1

Date     1990-01-03  1990-01-04  1990-01-05  ...  2020-04-09  2020-04-14  2020-04-15
AAAAAAA        1.11        1.11        1.09  ...      102.22      103.46      103.96
BBBBBBB         NaN         NaN         NaN  ...      308.70      314.95      314.10
CCCCCCC         NaN         NaN         NaN  ...       65.34       58.72       56.18
DDDDDDD        5.52        5.51        5.53  ...      104.50      106.03         NaN
EEEEEEE         NaN         NaN         NaN  ...     1211.45     1269.23         NaN
FFFFFFF         NaN         NaN         NaN  ...       36.14       36.85         NaN
GGGGGGG       93.35       94.37       94.37  ...     1564.00     1537.50     1482.50
HHHHHHH         NaN         NaN         NaN  ...       45.69       46.68       46.24
IIIIIII         NaN         NaN         NaN  ...       75.10       74.88       74.40
JJJJJJJ      328.76      328.25      327.74  ...     6168.00     6448.00     6296.00
KKKKKKK         NaN         NaN         NaN  ...       23.49       23.50       24.04
LLLLLLL        4.45        4.41        4.34  ...       36.55       35.96         NaN
MMMMMMM        1.96        1.96        1.94  ...      141.23      146.03         NaN
NNNNNNN        1.09        1.09        1.09  ...      267.99      287.05         NaN
OOOOOOO        1.09        1.09        1.08  ...      201.53      207.17         NaN
PPPPPPP         NaN         NaN         NaN  ...       98.00      100.80      100.50
QQQQQQQ         NaN         NaN         NaN  ...      129.00      128.40      124.20
RRRRRRR         NaN         NaN         NaN  ...      140.60      141.45      139.60
[18 rows x 7658 columns]

df2

Symbol  Average Purchase Price  Quantity
0   AAAAAAA                  49.980     320.0
1   BBBBBBB                 239.125     120.0
2   CCCCCCC                 223.040      40.0
3   DDDDDDD                  90.370     100.0
4   EEEEEEE                 701.300      10.0
5   FFFFFFF                  35.150     120.0
6   GGGGGGG                1259.000     700.0
7   HHHHHHH                  32.050     250.0
8   IIIIIII                  53.300     240.0
9   JJJJJJJ                6805.000     130.0
10  KKKKKKK                  27.590    1000.0
11  LLLLLLL                  82.120     170.0
12  MMMMMMM                 106.470     150.0
13  NNNNNNN                  95.970     308.0
14  OOOOOOO                  81.420     150.0
15  PPPPPPP                  39.690      60.0
16  QQQQQQQ                  35.270     104.0
17  RRRRRRR                  68.240      12.0

但是当我使用该功能时:

date = '2020-04-14'
total = df2[['Quantity']].mul(df1[date], axis=0)
print(total)

(理想情况下,我想为每个日期都这样做,但我只是在学习,所以我认为我应该从一个日期开始)

我得到:

Quantity
0             NaN
1             NaN
2             NaN
3             NaN
4             NaN
5             NaN
6             NaN
7             NaN
8             NaN
9             NaN
10            NaN
11            NaN
12            NaN
13            NaN
14            NaN
15            NaN
16            NaN
17            NaN
AAAAAAA       NaN
BBBBBBB       NaN
CCCCCCC       NaN
DDDDDDD       NaN
EEEEEEE       NaN
FFFFFFF       NaN
GGGGGGG       NaN
HHHHHHH       NaN
IIIIIII       NaN
JJJJJJJ       NaN
KKKKKKK       NaN
LLLLLLL       NaN
MMMMMMM       NaN
NNNNNNN       NaN
OOOOOOO       NaN
PPPPPPP       NaN
QQQQQQQ       NaN
RRRRRRR       NaN

我该如何解决?

2 个答案:

答案 0 :(得分:1)

这是索引问题。产品数据框的索引列可以证明Symbol是第一个数据框的索引,而第二个具有顺序索引。假设在任何一个数据帧中都没有重复符号,则可以将Symbol设置为第二个索引中的索引

date = '2020-04-14'
total = df2.set_index('Symbol')[['Quantity']].mul(df1[date], axis=0)
print(total)

它给出:

          Quantity
Symbol            
AAAAAAA    33107.2
BBBBBBB    37794.0
CCCCCCC     2348.8
DDDDDDD    10603.0
EEEEEEE    12692.3
FFFFFFF     4422.0
GGGGGGG  1076250.0
HHHHHHH    11670.0
IIIIIII    17971.2
JJJJJJJ   838240.0
KKKKKKK    23500.0
LLLLLLL     6113.2
MMMMMMM    21904.5
NNNNNNN    88411.4
OOOOOOO    31075.5
PPPPPPP     6048.0
QQQQQQQ    13353.6
RRRRRRR     1697.4

答案 1 :(得分:0)

问题出在索引中-您的数据帧具有不同的索引。要使代码正常工作,请使用pandas.DataFrame.reset_index()方法统一两个数据帧中的索引。您可以使用以下代码。

>>> df1.reset_index(inplace=True)

代码会将df1中的索引从0更改为17,这与df2的索引相同。