我正在尝试将一项功能应用于每种度量的不同读数。不用转换数据框就可以做到吗?
import random
import pandas as pd
df = pd.DataFrame({
'index': sorted(['A', 'B']*3),
'measure': [i for i in range(0,3)]*2,
'reading': [random.random() for i in range(0,6)]
})
index measure reading
0 A 0 0.260492
1 A 1 0.805028
2 A 2 0.548699
3 B 0 0.014042
4 B 1 0.719705
5 B 2 0.398824
如何为每个索引的不同读数应用诸如基本差异之类的功能?
在这里,我假定函数适用于读取0和1。由于我需要针对不同的度量值进行计算,因此它应该是调用的一部分。
所需的输出如下:
index applied
0 A 0.5445359999999999
1 B 0.705663
答案 0 :(得分:0)
尝试一下
import random
import pandas as pd
import numpy as np
df = pd.DataFrame({
'index': sorted(['A', 'B']*3),
'measure': [i for i in range(0,3)]*2,
'reading': [random.random() for i in range(0,6)]
})
print(df)
# index measure reading
# 0 A 0 0.869707
# 1 A 1 0.120680
# 2 A 2 0.772035
# 3 B 0 0.565548
# 4 B 1 0.577074
# 5 B 2 0.290668
start = 0
stop = 1
# I decided to specify start and stop value separately, the absolute difference is
# calculated via np.sum(). If the difference between start and stop is always 1, you
# can omit the np.sum() call.
df = df.groupby('index').agg(applied=('reading', lambda x: np.sum(np.diff(x)
[start:stop])))
print(df)
# applied
# index
# A -0.749027
# B 0.011526