如何从网站HTML页面删除进度加载页面?

时间:2020-04-13 18:42:49

标签: javascript html css pace

如何从网站HTML页面中删除进度加载页面?

css节奏文件:

def calc_rpn(C, img_data, width, height, resized_width, resized_height, img_length_calc_function):
    """(Important part!) Calculate the rpn for all anchors 
        If feature map has shape 38x50=1900, there are 1900x9=17100 potential anchors

    Args:
        C: config
        img_data: augmented image data
        width: original image width (e.g. 600)
        height: original image height (e.g. 800)
        resized_width: resized image width according to C.im_size (e.g. 300)
        resized_height: resized image height according to C.im_size (e.g. 400)
        img_length_calc_function: function to calculate final layer's feature map (of base model) size according to input image size

    Returns:
        y_rpn_cls: list(num_bboxes, y_is_box_valid + y_rpn_overlap)
            y_is_box_valid: 0 or 1 (0 means the box is invalid, 1 means the box is valid)
            y_rpn_overlap: 0 or 1 (0 means the box is not an object, 1 means the box is an object)
        y_rpn_regr: list(num_bboxes, 4*y_rpn_overlap + y_rpn_regr)
            y_rpn_regr: x1,y1,x2,y2 bunding boxes coordinates
    """
    downscale = float(C.rpn_stride) 
    anchor_sizes = C.anchor_box_scales   # 128, 256, 512
    anchor_ratios = C.anchor_box_ratios  # 1:1, 1:2*sqrt(2), 2*sqrt(2):1
    num_anchors = len(anchor_sizes) * len(anchor_ratios) # 3x3=9

    # calculate the output map size based on the network architecture
    (output_width, output_height) = img_length_calc_function(resized_width, resized_height)

    n_anchratios = len(anchor_ratios)    # 3

    # initialise empty output objectives
    y_rpn_overlap = np.zeros((output_height, output_width, num_anchors))
    y_is_box_valid = np.zeros((output_height, output_width, num_anchors))
    y_rpn_regr = np.zeros((output_height, output_width, num_anchors * 4))

    num_bboxes = len(img_data['bboxes'])

    num_anchors_for_bbox = np.zeros(num_bboxes).astype(int)
    best_anchor_for_bbox = -1*np.ones((num_bboxes, 4)).astype(int)
    best_iou_for_bbox = np.zeros(num_bboxes).astype(np.float32)
    best_x_for_bbox = np.zeros((num_bboxes, 4)).astype(int)
    best_dx_for_bbox = np.zeros((num_bboxes, 4)).astype(np.float32)

    # get the GT box coordinates, and resize to account for image resizing
    gta = np.zeros((num_bboxes, 4))
    for bbox_num, bbox in enumerate(img_data['bboxes']):
        # get the GT box coordinates, and resize to account for image resizing
        gta[bbox_num, 0] = bbox['x1'] * (resized_width / float(width))
        gta[bbox_num, 1] = bbox['x2'] * (resized_width / float(width))
        gta[bbox_num, 2] = bbox['y1'] * (resized_height / float(height))
        gta[bbox_num, 3] = bbox['y2'] * (resized_height / float(height))

    # rpn ground truth

    for anchor_size_idx in range(len(anchor_sizes)):
        for anchor_ratio_idx in range(n_anchratios):
            anchor_x = anchor_sizes[anchor_size_idx] * anchor_ratios[anchor_ratio_idx][0]
            anchor_y = anchor_sizes[anchor_size_idx] * anchor_ratios[anchor_ratio_idx][1]   

            for ix in range(output_width):                  
                # x-coordinates of the current anchor box   
                x1_anc = downscale * (ix + 0.5) - anchor_x / 2
                x2_anc = downscale * (ix + 0.5) + anchor_x / 2  

                # ignore boxes that go across image boundaries                  
                if x1_anc < 0 or x2_anc > resized_width:
                    continue

                for jy in range(output_height):

                    # y-coordinates of the current anchor box
                    y1_anc = downscale * (jy + 0.5) - anchor_y / 2
                    y2_anc = downscale * (jy + 0.5) + anchor_y / 2

                    # ignore boxes that go across image boundaries
                    if y1_anc < 0 or y2_anc > resized_height:
                        continue

                    # bbox_type indicates whether an anchor should be a target
                    # Initialize with 'negative'
                    bbox_type = 'neg'

                    # this is the best IOU for the (x,y) coord and the current anchor
                    # note that this is different from the best IOU for a GT bbox
                    best_iou_for_loc = 0.0

                    for bbox_num in range(num_bboxes):

                        # get IOU of the current GT box and the current anchor box
                        curr_iou = iou([gta[bbox_num, 0], gta[bbox_num, 2], gta[bbox_num, 1], gta[bbox_num, 3]], [x1_anc, y1_anc, x2_anc, y2_anc])
                        # calculate the regression targets if they will be needed
                        if curr_iou > best_iou_for_bbox[bbox_num] or curr_iou > C.rpn_max_overlap:
                            cx = (gta[bbox_num, 0] + gta[bbox_num, 1]) / 2.0
                            cy = (gta[bbox_num, 2] + gta[bbox_num, 3]) / 2.0
                            cxa = (x1_anc + x2_anc)/2.0
                            cya = (y1_anc + y2_anc)/2.0

                            # x,y are the center point of ground-truth bbox
                            # xa,ya are the center point of anchor bbox (xa=downscale * (ix + 0.5); ya=downscale * (iy+0.5))
                            # w,h are the width and height of ground-truth bbox
                            # wa,ha are the width and height of anchor bboxe
                            # tx = (x - xa) / wa
                            # ty = (y - ya) / ha
                            # tw = log(w / wa)
                            # th = log(h / ha)
                            tx = (cx - cxa) / (x2_anc - x1_anc)
                            ty = (cy - cya) / (y2_anc - y1_anc)
                            tw = np.log((gta[bbox_num, 1] - gta[bbox_num, 0]) / (x2_anc - x1_anc))
                            th = np.log((gta[bbox_num, 3] - gta[bbox_num, 2]) / (y2_anc - y1_anc))

                        if img_data['bboxes'][bbox_num]['class'] != 'bg':

                            # all GT boxes should be mapped to an anchor box, so we keep track of which anchor box was best
                            if curr_iou > best_iou_for_bbox[bbox_num]:
                                best_anchor_for_bbox[bbox_num] = [jy, ix, anchor_ratio_idx, anchor_size_idx]
                                best_iou_for_bbox[bbox_num] = curr_iou
                                best_x_for_bbox[bbox_num,:] = [x1_anc, x2_anc, y1_anc, y2_anc]
                                best_dx_for_bbox[bbox_num,:] = [tx, ty, tw, th]

                            # we set the anchor to positive if the IOU is >0.7 (it does not matter if there was another better box, it just indicates overlap)
                            if curr_iou > C.rpn_max_overlap:
                                bbox_type = 'pos'
                                num_anchors_for_bbox[bbox_num] += 1
                                # we update the regression layer target if this IOU is the best for the current (x,y) and anchor position
                                if curr_iou > best_iou_for_loc:
                                    best_iou_for_loc = curr_iou
                                    best_regr = (tx, ty, tw, th)

                            # if the IOU is >0.3 and <0.7, it is ambiguous and no included in the objective
                            if C.rpn_min_overlap < curr_iou < C.rpn_max_overlap:
                                # gray zone between neg and pos
                                if bbox_type != 'pos':
                                    bbox_type = 'neutral'

                    # turn on or off outputs depending on IOUs
                    if bbox_type == 'neg':
                        y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
                        y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
                    elif bbox_type == 'neutral':
                        y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
                        y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
                    elif bbox_type == 'pos':
                        y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
                        y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
                        start = 4 * (anchor_ratio_idx + n_anchratios * anchor_size_idx)
                        y_rpn_regr[jy, ix, start:start+4] = best_regr

    # we ensure that every bbox has at least one positive RPN region

    for idx in range(num_anchors_for_bbox.shape[0]):
        if num_anchors_for_bbox[idx] == 0:
            # no box with an IOU greater than zero ...
            if best_anchor_for_bbox[idx, 0] == -1:
                continue
            y_is_box_valid[
                best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], best_anchor_for_bbox[idx,2] + n_anchratios *
                best_anchor_for_bbox[idx,3]] = 1
            y_rpn_overlap[
                best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], best_anchor_for_bbox[idx,2] + n_anchratios *
                best_anchor_for_bbox[idx,3]] = 1
            start = 4 * (best_anchor_for_bbox[idx,2] + n_anchratios * best_anchor_for_bbox[idx,3])
            y_rpn_regr[
                best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], start:start+4] = best_dx_for_bbox[idx, :]

    y_rpn_overlap = np.transpose(y_rpn_overlap, (2, 0, 1))
    y_rpn_overlap = np.expand_dims(y_rpn_overlap, axis=0)

    y_is_box_valid = np.transpose(y_is_box_valid, (2, 0, 1))
    y_is_box_valid = np.expand_dims(y_is_box_valid, axis=0)

    y_rpn_regr = np.transpose(y_rpn_regr, (2, 0, 1))
    y_rpn_regr = np.expand_dims(y_rpn_regr, axis=0)

    pos_locs = np.where(np.logical_and(y_rpn_overlap[0, :, :, :] == 1, y_is_box_valid[0, :, :, :] == 1))
    neg_locs = np.where(np.logical_and(y_rpn_overlap[0, :, :, :] == 0, y_is_box_valid[0, :, :, :] == 1))

    num_pos = len(pos_locs[0])

    # one issue is that the RPN has many more negative than positive regions, so we turn off some of the negative
    # regions. We also limit it to 256 regions.
    num_regions = 256

    if len(pos_locs[0]) > num_regions/2:
        val_locs = random.sample(range(len(pos_locs[0])), len(pos_locs[0]) - num_regions/2)
        y_is_box_valid[0, pos_locs[0][val_locs], pos_locs[1][val_locs], pos_locs[2][val_locs]] = 0
        num_pos = num_regions/2

    if len(neg_locs[0]) + num_pos > num_regions:
        val_locs = random.sample(range(len(neg_locs[0])), len(neg_locs[0]) - num_pos)
        y_is_box_valid[0, neg_locs[0][val_locs], neg_locs[1][val_locs], neg_locs[2][val_locs]] = 0

    y_rpn_cls = np.concatenate([y_is_box_valid, y_rpn_overlap], axis=1)
    y_rpn_regr = np.concatenate([np.repeat(y_rpn_overlap, 4, axis=1), y_rpn_regr], axis=1)

    return np.copy(y_rpn_cls), np.copy(y_rpn_regr), num_pos

pace js文件:

.pace {
  -webkit-pointer-events: none;
  pointer-events: none;

  -webkit-user-select: none;
  -moz-user-select: none;
  user-select: none;

  -webkit-perspective: 12rem;
  -moz-perspective: 12rem;
  -ms-perspective: 12rem;
  -o-perspective: 12rem;
  perspective: 12rem;

  z-index: 2000;
  position: fixed;
  height: 6rem;
  width: 6rem;
  margin: auto;
  top: 0;
  left: 0;
  right: 0;
  bottom: 0;
}

.pace .pace-activity {
  display: block;
  position: fixed;
  z-index: 2000;
  top: 35px;
  right: 35px;
  width: 20px;
  height: 20px;
  border: solid 2px transparent;
  border-top-color: #0aa699;
  border-left-color: #0aa699;
  border-radius: 20px;
  -webkit-animation: pace-spinner 400ms linear infinite;
  -moz-animation: pace-spinner 400ms linear infinite;
  -ms-animation: pace-spinner 400ms linear infinite;
  -o-animation: pace-spinner 400ms linear infinite;
  animation: pace-spinner 400ms linear infinite;
}

.pace.pace-inactive .pace-activity {
  display: none;
}

@-webkit-keyframes pace-spinner {
  0% { -webkit-transform: rotate(0deg); transform: rotate(0deg); }
  100% { -webkit-transform: rotate(360deg); transform: rotate(360deg); }
}
@-moz-keyframes pace-spinner {
  0% { -moz-transform: rotate(0deg); transform: rotate(0deg); }
  100% { -moz-transform: rotate(360deg); transform: rotate(360deg); }
}
@-o-keyframes pace-spinner {
  0% { -o-transform: rotate(0deg); transform: rotate(0deg); }
  100% { -o-transform: rotate(360deg); transform: rotate(360deg); }
}
@-ms-keyframes pace-spinner {
  0% { -ms-transform: rotate(0deg); transform: rotate(0deg); }
  100% { -ms-transform: rotate(360deg); transform: rotate(360deg); }
}
@keyframes pace-spinner {
  0% { transform: rotate(0deg); transform: rotate(0deg); }
  100% { transform: rotate(360deg); transform: rotate(360deg); }
}

这两个css和js文件作为链接放置在我的php文件中,删除它们时,空白页就要来了,html中的所有内容都消失了。我不知道该如何摆脱这种速度加载功能。enter image description here

0 个答案:

没有答案