强化学习不适用于这款非常简单的游戏,为什么? Q学习

时间:2020-04-11 19:52:18

标签: python tensorflow reinforcement-learning

我编写了一个非常简单的游戏,其工作方式如下:

给定一个4x4的正方形区域,玩家可以移动(上,右,下或左)。

  • 在特工从未访问过的广场上获得奖励1。

  • 踩到“死地”可获得-5的奖励,然后游戏将被重置。

  • 在已经访问过的字段上移动会获得-1

  • 进入“胜利场”(恰好有一个)可获得5分奖励,游戏也会被重置。


现在,我希望AI通过Q-Learning学习玩该游戏。

我如何组织输入/要素工程:

网络的输入是形状为1x4的数组,其中arr [0]表示上方的字段(向上移动时),arr [1]表示右侧的字段,arr [2]下方的字段,arr [3]左边的那个。

该数组可以保存的可能值:0、1、2、3

0 =“死场”,所以最坏的情况

1 =该字段位于4x4字段之外(因此您无法进入此处)或该字段已被访问

2 =未访问的字段(所以很好)

3 =“胜利领域”,所以是最好的情况

如您所见,我通过他们的奖励命令他们。

由于游戏以相同的方式进行输入(0 =向上移动,1 =向右移动,2 =向下移动,3 =向左移动),因此AI唯一需要学习的基本上是:选择具有最大值的数组索引。

但是不幸的是,它无法正常工作,即使在30.000集之后,网络也无法学习。


这是我的代码(包括开头的游戏):

import numpy as np
import random
Import tensorflow as tf
import matplotlib.pyplot as plt

from time import sleep

episoden = 0

felder = []
schon_besucht = []

playerx = 0
playery = 0

grafik = False

def gib_zustand():
    # besonderes feature engineering:
    # input besteht nur aus einer richtung, die one-hot-encoded ist; also 4 inputneuronen
    # (glut, wand/besucht, unbesucht, sieg)
    #
    # es ist die richtung, die bewertet werden soll (also 1 outputneuron fuer eine richtung)

    # rueckgabe hier: array, shape: 4x4 (s.o.)

    global playerx
    global playery

    # oben 
    if playery == 0:
        oben = 1
    else:
        oben = felder[playery-1][playerx]

    # rechts
    if playerx == 4:
        rechts = 1
    else:
        rechts = felder[playery][playerx+1]

    # unten
    if playery == 4:
        unten = 1
    else:
        unten = felder[playery+1][playerx]

    # links
    if playerx == 0:
        links = 1
    else:
        links = felder[playery][playerx-1]

    return np.array([oben, rechts, unten, links])

def grafisch():
    if grafik:

        # encoding:
        # glut = G, besucht = b, unbesucht = , sieg = S, Spieler = X
        global felder
        global playerx
        global playery

        print('')

        for y in range(0,5):
            print('|', end='')
            for x in range(0,5):
                if felder[y][x] == 0:
                    temp = 'G'
                if felder[y][x] == 1:
                    temp = 'b'
                if felder[y][x] == 2:
                    temp = ' '
                if felder[y][x] == 3:
                    temp = 'S'
                if y == playery and x == playerx:
                    temp = 'X'

                print(temp, end='')
                print('|', end='')
            print('')

def reset():
    print('--- RESET ---')

    global playery
    global playerx
    global felder
    global schon_besucht

    playerx = 1
    playery = 3

    # anordnung
    # glut = 0, wand/besucht = 1, unbesucht = 2, sieg = 3

    felder = [[2 for x in range(0,5)] for y in range(0,5)]
    # zwei mal glut setzen
    gl1 = random.randint(1,3)
    gl1_1 = random.randint(2,3) if gl1==3 else (random.randint(1,2) if gl1==1 else random.randint(1,3))
    felder[gl1][gl1_1] = 0 # glut

    # zweites mal
    gl1 = random.randint(1,3)
    gl1_1 = random.randint(2,3) if gl1==3 else (random.randint(1,2) if gl1==1 else random.randint(1,3))
    felder[gl1][gl1_1] = 0 # glut

    # pudding
    felder[1][3] = 3

    # ruecksetzen
    schon_besucht = []

    grafisch()

    return gib_zustand()

def step(zug):
    # 0 = oben, 1 = rechts, 2 = unten, 3 = links
    global playerx
    global playery
    global felder
    global schon_besucht

    if zug == 0:
        if playery != 0:
            playery -= 1
    if zug == 1:
        if playerx != 4:
            playerx += 1
    if zug == 2:
        if playery != 4:
            playery += 1
    if zug == 3:
        if playerx != 0:
            playerx -= 1

    # belohnung holen
    wert = felder[playery][playerx]

    if wert==0:
        belohnung = -5
    if wert==1:
        belohnung = -1
    if wert==2:
        belohnung = 1
    if wert==3:
        belohnung = 5

    # speichern wenn nicht verloren
    if belohnung != -5:
        schon_besucht.append((playery,playerx))
        felder[playery][playerx] = 1

    grafisch()

    return gib_zustand(), belohnung, belohnung==5, 0 # 0 damits passt

episoden = 0

tf.reset_default_graph()

#These lines establish the feed-forward part of the network used to choose actions
inputs1 = tf.placeholder(shape=[1,4],dtype=tf.float32)
#W1 = tf.Variable(tf.random_uniform([16,8],0,0.01))
W2 = tf.Variable(tf.random_uniform([4,4],0,0.01))
#schicht2 = tf.matmul(inputs1,W1)
Qout = tf.matmul(inputs1,W2)
predict = tf.argmax(Qout,1)

#Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)
loss = tf.reduce_sum(tf.square(nextQ - Qout))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
updateModel = trainer.minimize(loss)

init = tf.initialize_all_variables()

# Set learning parameters
y = .99
e = 0.1
num_episodes = 10_000
#create lists to contain total rewards and steps per episode
jList = []
rList = []
with tf.Session() as sess:
    sess.run(init)
    for i in range(num_episodes):             
        #Reset environment and get first new observation
        s = reset()
        rAll = 0
        d = False
        j = 0
        #The Q-Network        
        while j < 99:
            j+=1
            #Choose an action by greedily (with e chance of random action) from the Q-network
            a,allQ = sess.run([predict,Qout],feed_dict={inputs1:s.reshape(1,4)}) # berechnet prediction fuer input (input scheint hier one hot encoded zu sein)
            if np.random.rand(1) < e:
                a[0] = random.randint(0,3)                 

            #Get new state and reward from environment
            s1,r,d,_ = step(a[0])
            #Obtain the Q' values by feeding the new state through our network
            Q1 = sess.run(Qout,feed_dict={inputs1:s1.reshape(1,4)})
            #Obtain maxQ' and set our target value for chosen action.
            maxQ1 = np.max(Q1)


            targetQ = allQ
            targetQ[0,a[0]] = r + y*maxQ1
            #Train our network using target and predicted Q values

            _,W1 = sess.run([updateModel,W2],feed_dict={inputs1:s.reshape(1,4),nextQ:targetQ})
            rAll += r
            s = s1

            if r == -5 or r == 5:
                if r == 5:
                    episoden+=1

                reset()

                #Reduce chance of random action as we train the model.
                e = 1./((i/50) + 10)
                break
        jList.append(j)
        #print(rAll)
        rList.append(rAll)
print("Percent of succesful episodes: " + str((episoden/num_episodes)*100) + "%")
plt.plot(rList)
plt.plot(jList)

我在一个类似的问题中读到,Q值过高的原因可能是,代理商实际上有可能在游戏中获得无限高的总奖励。如果代理可以踩到已经访问过的字段并获得1的奖励,那么情况就是这样。当然,可能的总奖励将是无穷大。但这不是这种情况:玩家在执行此操作时会得到不良奖励(-1)。少计算:获胜场获得5。未获胜场获得1。至少有一个死场。总共有16个字段。最大可能的总奖励:14 * 1 + 1 * 5 = 19

1 个答案:

答案 0 :(得分:0)

我终于找到了解决方案,花了我近一个星期的时间。

关键是要对我的输入内容进行一次热编码。这使我有16个输入神经元,而不是4个,但现在可以使用了。 在1.000集后,我大部分成功集约占91%。

我仍然想知道这样一个事实,即当输入未进行热编码时,它不起作用。我知道ANN会自动使用神经元接受的不同输入之间的更大或更小关系,这可能是一个缺点。 但是由于我以这种方式对输入进行排序,所以如果一个输入大于另一个输入,那也意味着输出应该以相同的方式更大。因此,如果ANN使用该关系,则这里没有缺点,这应该是一个优势。

因此,我认为最好不要对输入进行一次热编码,因为那样一来,我将极大地降低尺寸(4而不是16)。

显然,这个想法没有用。

但是,正如我所说的,现在可以使用16个输入。