我想对每7行进行分组和求和(因此每周获得总计)。当前有两列。一个用于日期,另一个用于浮动。
1/22/2020 NaN
1/23/2020 0.0
1/24/2020 1.0
1/25/2020 0.0
1/26/2020 3.0
1/27/2020 0.0
1/28/2020 0.0
1/29/2020 0.0
1/30/2020 0.0
1/31/2020 2.0
2/1/2020 1.0
2/2/2020 0.0
2/3/2020 3.0
2/4/2020 0.0
2/5/2020 0.0
2/6/2020 0.0
2/7/2020 0.0
2/8/2020 0.0
2/9/2020 0.0
2/10/2020 0.0
2/11/2020 1.0
2/12/2020 0.0
2/13/2020 1.0
2/14/2020 0.0
2/15/2020 0.0
2/16/2020 0.0
2/17/2020 0.0
2/18/2020 0.0
2/19/2020 0.0
2/20/2020 0.0
... ...
2/28/2020 0.0
2/29/2020 8.0
3/1/2020 6.0
3/2/2020 23.0
3/3/2020 20.0
3/4/2020 31.0
3/5/2020 68.0
3/6/2020 45.0
3/7/2020 119.0
3/8/2020 114.0
3/9/2020 64.0
3/10/2020 194.0
3/11/2020 397.0
3/12/2020 452.0
3/13/2020 590.0
3/14/2020 710.0
3/15/2020 61.0
3/16/2020 1389.0
3/17/2020 1789.0
3/18/2020 906.0
3/19/2020 3068.0
3/20/2020 4009.0
3/21/2020 4017.0
3/23/2020 25568.0
3/24/2020 10074.0
3/25/2020 12043.0
3/26/2020 18058.0
3/27/2020 17822.0
3/28/2020 19825.0
3/29/2020 19408.0
答案 0 :(得分:1)
将日期列设置为索引,并使用resample
df['Date'] = pd.to_datetime(df['Date'])
df = df.set_index('Date')
df.resample('1W').sum()
答案 1 :(得分:1)
假定您的日期列称为dt
,而您的值列称为val
:
import numpy as np
# in case if it's not already date time format:
df["dt"]=pd.to_datetime(df["dt"])
# your data looks sorted, but in case if it's not - that's the prerequisite here:
df=df.sort_values("dt")
df=df.groupby(np.arange(len(df))//7).agg({"dt": (min, max), "val": sum})
dt
的聚合仅完成,因此您可以明确地指示聚合间隔-仅以min
为例,或者完全忽略它就足够了……