Tensorflow概率错误:OperatorNotAllowedInGraphError:遍历tf.Tensor不允许

时间:2020-03-31 21:26:29

标签: python tensorflow tensorflow-probability

我试图通过使用NUTS估计张量流中的模型来提供一个似然函数。我检查了似然函数是否返回合理的值。我在这里遵循用于设置NUTS的设置: https://rlhick.people.wm.edu/posts/custom-likes-tensorflow.html

以及此处用于设置先验条件的一些示例,等等: https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/jupyter_notebooks/Multilevel_Modeling_Primer.ipynb

我的代码在colab笔记本中: https://drive.google.com/file/d/1L9JQPLO57g3OhxaRCB29do2m808ZUeex/view?usp=sharing

我得到错误:OperatorNotAllowedInGraphError: iterating over tf.Tensor is not allowed: AutoGraph did not convert this function. Try decorating it directly with @tf.function.,这是我第一次使用tensorflow,而我完全无法理解这个错误。如果我可以将起始参数值作为单个输入传递,这也是理想的选择(例如,我正在努力的示例没有执行此操作,但是我认为有可能)。

更新 看来我不得不更改@ tf.function装饰器的位置。采样器现在运行,但是它为我提供了每个参数的所有采样相同的值。是否需要通过log_prob()函数传递联合分发?我显然缺少了一些东西。我可以通过bfgs优化来运行似然度并获得合理的结果(我已经通过其他软件中具有固定参数的最大似然度对模型进行了估算)。看来我需要定义函数以返回联合分布并调用log_prob()。如果将其设置为逻辑回归,则可以执行此操作(逻辑选择模型在逻辑上分布在差异中)。但是,我丢失了标准的关闭表格。

我的功能如下:

 @tf.function
def mmnl_log_prob(init_mu_b_time,init_sigma_b_time,init_a_car,init_a_train,init_b_cost,init_scale):

    # Create priors for hyperparameters
    mu_b_time = tfd.Sample(tfd.Normal(loc=init_mu_b_time, scale=init_scale),sample_shape=1).sample()
    # HalfCauchy distributions are too wide for logit discrete choice

    sigma_b_time = tfd.Sample(tfd.Normal(loc=init_sigma_b_time, scale=init_scale),sample_shape=1).sample()


    # Create priors for parameters
    a_car = tfd.Sample(tfd.Normal(loc=init_a_car, scale=init_scale),sample_shape=1).sample()
    a_train = tfd.Sample(tfd.Normal(loc=init_a_train, scale=init_scale),sample_shape=1).sample()

    # a_sm = tfd.Sample(tfd.Normal(loc=init_a_sm, scale=init_scale),sample_shape=1).sample()

    b_cost = tfd.Sample(tfd.Normal(loc=init_b_cost, scale=init_scale),sample_shape=1).sample()
    # Define a heterogeneous random parameter model with MultivariateNormalDiag()
    # Use MultivariateNormalDiagPlusLowRank() to define nests, etc.

    b_time = tfd.Sample(tfd.MultivariateNormalDiag(  # b_time
          loc=mu_b_time,
          scale_diag=sigma_b_time),sample_shape=num_idx).sample()


    # Definition of the utility functions

    V1 = a_train + tfm.multiply(b_time,TRAIN_TT_SCALED) + b_cost * TRAIN_COST_SCALED
    V2 = tfm.multiply(b_time,SM_TT_SCALED) + b_cost * SM_COST_SCALED
    V3 = a_car + tfm.multiply(b_time,CAR_TT_SCALED) + b_cost * CAR_CO_SCALED
    print("Vs",V1,V2,V3)

    # Definition of loglikelihood
    eV1 = tfm.multiply(tfm.exp(V1),TRAIN_AV_SP)
    eV2 = tfm.multiply(tfm.exp(V2),SM_AV_SP)
    eV3 = tfm.multiply(tfm.exp(V3),CAR_AV_SP)
    eVD = eV1 + eV2 +
 eV3
    print("eVs",eV1,eV2,eV3,eVD)

    l1 = tfm.multiply(tfm.truediv(eV1,eVD),tf.cast(tfm.equal(CHOICE,1),tf.float32))
    l2 = tfm.multiply(tfm.truediv(eV2,eVD),tf.cast(tfm.equal(CHOICE,2),tf.float32))
    l3 = tfm.multiply(tfm.truediv(eV3,eVD),tf.cast(tfm.equal(CHOICE,3),tf.float32))
    ll = tfm.reduce_sum(tfm.log(l1+l2+l3))

    print("ll",ll)

    return ll

该函数的调用方式如下:

    nuts_samples = 1000
nuts_burnin = 500
chains = 4
## Initial step size
init_step_size=.3
init = [0.,0.,0.,0.,0.,.5]

##
## NUTS (using inner step size averaging step)
##
@tf.function
def nuts_sampler(init):
    nuts_kernel = tfp.mcmc.NoUTurnSampler(
      target_log_prob_fn=mmnl_log_prob, 
      step_size=init_step_size,
      )
    adapt_nuts_kernel = tfp.mcmc.DualAveragingStepSizeAdaptation(
  inner_kernel=nuts_kernel,
  num_adaptation_steps=nuts_burnin,
  step_size_getter_fn=lambda pkr: pkr.step_size,
  log_accept_prob_getter_fn=lambda pkr: pkr.log_accept_ratio,
  step_size_setter_fn=lambda pkr, new_step_size: pkr._replace(step_size=new_step_size)
       )

    samples_nuts_, stats_nuts_ = tfp.mcmc.sample_chain(
  num_results=nuts_samples,
  current_state=init,
  kernel=adapt_nuts_kernel,
  num_burnin_steps=100,
  parallel_iterations=5)
    return samples_nuts_, stats_nuts_

samples_nuts, stats_nuts = nuts_sampler(init)

1 个答案:

答案 0 :(得分:0)

我对我的问题有答案!这只是一个不同名称的问题。我需要将我的模型定义为softmax函数,我知道这就是所谓的“ logit模型”,但这并不是我想要的。以下博客文章给我带来了顿悟: http://khakieconomics.github.io/2019/03/17/Putting-it-all-together.html