我是深度学习和keras的新手,我想做的任务是:使用50个历元在训练数据上训练模型。
我写了以下代码:
import pandas as pd
from tensorflow.python.keras import Sequential
from tensorflow.python.keras.layers import Dense
from sklearn.model_selection import train_test_split
concrete_data = pd.read_csv('https://cocl.us/concrete_data')
n_cols = concrete_data.shape[1]
model = Sequential()
model.add(Dense(units=10, activation='relu', input_shape=(n_cols,)))
model.compile(loss='mean_squared_error',
optimizer='adam')
x = concrete_data.Cement
y = concrete_data.drop('Cement', axis=1)
xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size = 0.3)
但是当我想以这种方式拟合模型时:
model.fit(xTrain, yTrain, validation_data=(xTrain, yTrain), epochs=50)
我有此错误:
Epoch 1/50
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-83-489dd99522b4> in <module>()
----> 1 model.fit(xTrain, yTrain, validation_data=(xTrain, yTrain), epochs=50)
10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
966 except Exception as e: # pylint:disable=broad-except
967 if hasattr(e, "ag_error_metadata"):
--> 968 raise e.ag_error_metadata.to_exception(e)
969 else:
970 raise
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:503 train_function *
outputs = self.distribute_strategy.run(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:951 run **
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:464 train_step **
y_pred = self(x, training=True)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:885 __call__
self.name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:216 assert_input_compatibility
' but received input with shape ' + str(shape))
ValueError: Input 0 of layer sequential_2 is incompatible with the layer: expected axis -1 of input shape to have value 9 but received input with shape [None, 1]
答案 0 :(得分:2)
我认为您需要像下面这样更改input_shape:
input_shape=(n_cols,) =>> input_shape=(n_cols-1,)
一开始,您的数据包含要素和目标数据,因此形状由两者组成。您需要从该部分减去1来指定输入形状。
另一个问题是您需要在x
和y
之间切换数据。我认为您想用其余的数据集来预测Cement
。因此,Cement
信息应存储在y
中,其余数据集应存储在x
中。
此外,您需要更改代码的这一部分。
model.fit(xTrain, yTrain, validation_data=(xTrain, yTrain), epochs=50)
在培训和验证中使用相同的数据没有任何意义。您可以指定验证比例,以便keras自动使您成为现实。